• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Understanding of microbial electronic symbiosis capable of ultra-effective anaerobic wastewater treatment

Research Project

  • PDF
Project/Area Number 18H03400
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 64020:Environmental load reduction and remediation-related
Research InstitutionShizuoka University

Principal Investigator

Futamata hiroyuki  静岡大学, グリーン科学技術研究所, 教授 (50335105)

Co-Investigator(Kenkyū-buntansha) 新谷 政己  静岡大学, 工学部, 准教授 (20572647)
Project Period (FY) 2018-04-01 – 2021-03-31
Keywords廃水処理 / 微生物生態学 / 微生物燃料電池 / 環境微生物 / 嫌気
Outline of Final Research Achievements

A rechargeable biomineral (RBM) produced from strain HK-II was set in microbial fuel cells (MFCs), and its performance was investigated in laboratory scale for efficient anaerobic wastewater treatment technology. The MFCs suppressed the overproduction of excess activated sludge, whereas the efficiency of wastewater treatment was 10% to 15% of aerobic wastewater treatment, suggesting the importance of electron flow under anaerobic conditions. Microbial electric symbiosis was constructed using RBM and a lake sediment. Methane-production rate increased with increased acetate-consumption rate, although acetate is one of the end products under anaerobic bioconversion. The result suggest that organic compounds conversion was enhanced by the microbial electric symbiosis via RBM. These results suggested the efficient anaerobic wastewater treatment using RBM was confirmed and it is expected to improve the efficiency with increase of the contacting surface area with RBM and wastewater.

Free Research Field

微生物生態学

Academic Significance and Societal Importance of the Research Achievements

酸素のない嫌気的環境下における微生物による物質変換能力は、低エネルギー型廃水処理技術の構築にとって必須である一方、その効率化が最大の課題である。本研究では、学術的に関心が持たれている生物の新規呼吸形態である細胞外電子伝達と微生物由来蓄電性ミネラルに着目し、ひょっとすると自然界では一般的な現象かもしれないーしかし、これまでほとんど着目されなかったー微生物電子共生系の理解と嫌気的廃水処理効率の向上化に資する知見を得ており、学術的および社会的に意義ある研究と考えられる。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi