2022 Fiscal Year Final Research Report
Dynamical flow control of nanoparticles by machine learning and its application to single molecule identification technologies
Project/Area Number |
18H05242
|
Research Category |
Grant-in-Aid for Scientific Research (S)
|
Allocation Type | Single-year Grants |
Review Section |
Broad Section C
|
Research Institution | Osaka University |
Principal Investigator |
KAWANO Satoyuki 大阪大学, 大学院基礎工学研究科, 教授 (00250837)
|
Co-Investigator(Kenkyū-buntansha) |
土井 謙太郎 豊橋技術科学大学, 工学(系)研究科(研究院), 教授 (20378798)
辻 徹郎 京都大学, 情報学研究科, 准教授 (00708670)
山崎 嘉己 大阪大学, 大学院基礎工学研究科, 助教 (80926288)
上原 聡司 大阪大学, 基礎工学研究科, 准教授 (70742394)
|
Project Period (FY) |
2018-06-11 – 2023-03-31
|
Keywords | 分子流体力学 / Nanofluidics / ナノ粒子流 / 一分子計測 / 機械学習 |
Outline of Final Research Achievements |
Due to nanoparticles passing through a narrow channel, pulse-like current changes are detected in electrolyte solutions, and the identification of viruses or DNA bases is possible by analyzing the time-series data. The practical ultra-fine process of transparent glass substrates and the micro-current measurement have been developed here. They achieved the simultaneous visualization with the current detection in the nanoparticle flow, and a significant reduction of Brownian noise by time synchronous averaging. A novel theoretical analysis of molecular flow considering electrophoresis, thermophoresis, thermal fluctuation, optical pressure, particle clustering and coarse-grained DNA model was successfully made. These results contributed to expanding the knowledge of negative thermophoresis and pseudo-tunneling currents, to establishing a new academic field called “Optothermal Nanofluidics,” and to the single-molecule identification based on the AI including a large deviation principle.
|
Free Research Field |
分子流体力学
|
Academic Significance and Societal Importance of the Research Achievements |
ナノ流体素子技術(Nanofluidics)による一分子識別を目指し,従来の流体力学体系に「熱揺動と大偏差原理」「電気泳動,熱泳動及び光圧」「機械学習による最適設計と制御」に関する知識と技術の融合を推進した.独創的な学術展開,すなわち,ナノ粒子の再現的確率流動,荷電微粒子の運動に伴い発生する特殊電流,正負の熱泳動による粒子選択機能に関し,理論と実験の両面からこれらの本質的解明と利導に取り組んだ.光渦駆動のナノ粒子流動デバイス創製とともに,新しいデータ解析手法の開発によるコロナウイルスの識別性能向上が見込まれ,新学術分野:Optothermal Nanofluidicsでの先導的役割を果たした.
|