• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Establishment of design principle and basic technology for next generation medical high temperature superconducting skeleton-cyclotron

Research Project

  • PDF
Project/Area Number 18H05244
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Review Section Broad Section C
Research InstitutionWaseda University

Principal Investigator

Ishiyama Atsushi  早稲田大学, 理工学術院, 教授 (00130865)

Co-Investigator(Kenkyū-buntansha) 植田 浩史  岡山大学, 自然科学学域, 准教授 (10367039)
野口 聡  北海道大学, 情報科学研究院, 准教授 (30314735)
東 達也  国立研究開発法人量子科学技術研究開発機構, 量子医科学研究所 分子イメージング診断治療研究部, 部長 (50324629)
福田 光宏  大阪大学, 核物理研究センター, 教授 (60370467)
鷲尾 方一  早稲田大学, 理工学術院, 教授 (70158608)
Project Period (FY) 2018-06-11 – 2023-03-31
Keywords電気機器工学 / 超伝導材料 / 加速器 / 量子ビーム / 癌
Outline of Final Research Achievements

For advanced cancer therapy, targeted α-particle therapy is very promising. To widely use this cancer therapy, a large amount of Radio Isotope (At) which radiates α-rays must be stably produced. Our final goal is to develop an compact and variable-energy HTS (High Temperature Superconducting) accelerator called “Skelton Cyclotron (HTS-SC)”. In this research project, to develop a high-temperature superconducting coil system for HTS-SC, we developed an innovative coil technology for a rare-earth-based superconducting air-core multi-coil system. This technology can be expected that all 5-high (high mechanical strength, high current density, high thermal stability, high magnetic field, and high precision magnetic field) and variable output energy (multiple functions) are realized. Based on the results and findings obtained, the design principle of the coil system for HTS-SC is presented and the issues for its realization are clarified.

Free Research Field

超伝導工学

Academic Significance and Societal Importance of the Research Achievements

本研究で目標とした希土類系高温超伝導コイルを用いたスケルトン・サイクロトロン(HTS-SC)は、進行がん(遠隔転移)への効果が期待されるアルファー(α)線核医学治療の普及に不可欠となるα線放出RI(放射性同位体)製造のための小型(病院内に設置可)・高強度(製造量の増加)・出力エネルギー可変(同一装置でPET用RI製造など多機能化が可能)の加速器である。そしてこれを実現するために本研究課題で開発した革新的コイル化技術は、医療用超高磁場MRI(磁気共鳴イメージング)や次世代小型核融合炉用コイル開発などの基盤なることが期待できる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi