2021 Fiscal Year Final Research Report
Studies on Properties of the Data-Fitting Solution in Factor Analysis
Project/Area Number |
18K11191
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60030:Statistical science-related
|
Research Institution | Osaka University |
Principal Investigator |
Adachi Kohei 大阪大学, 人間科学研究科, 教授 (60299055)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 統計学 / 多変量解析 / 因子分析 / 行列代数 |
Outline of Final Research Achievements |
Factor analysis is a statistical procedure for extracting a few common factors that cause a number of variables. For example, the variables and common factors are the scores for test items and intelligence properties; they are also exemplified by behavioral patters and personality properties. I focused on the matrix-algebraic solution of the factor analysis to elucidate the following properties of the solution. [1] The solution for the multiplication of the common factors and the other (unique) factors multiplicated by coefficients can be uniquely determined. [2] Imposing an additional condition into the solution allows us to obtain the solution, in which the common factors, unique factors, and errors are completely decomposed. [3] The inequalities exist that elucidate the differences between factor analysis and principal component analysis, with the latter similar to the former.
|
Free Research Field |
統計科学
|
Academic Significance and Societal Importance of the Research Achievements |
多変量解析と総称される統計解析法の中でも,因子分析は,創案から100年以上の歴史を持ち,かつ,現在普及する統計ソフトウェアに常備されるポピュラーな手法であるが,その解の性質の細部が明確でなかったが,本研究で明らかになった. 因子分析は,心理学をはじめとした人文・社会科学から,自然科学に渡って広く利用される統計解析法であるため,本研究成果は,因子分析を利用する人文社会・自然科学の研究者,さらには,企業のデータサイエンティストに,因子分析の結果を解釈するための指針を与えることができる.
|