• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Mathematical analysis about misorientations and triple junctions effects on evolution of grain boundaries

Research Project

  • PDF
Project/Area Number 18K13446
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionNihon University

Principal Investigator

MIZUNO Masashi  日本大学, 理工学部, 准教授 (80609545)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords結晶成長 / 曲率流方程式 / 幾何学的変分問題 / Fokker-Planck方程式 / 結晶方位差 / 三重点
Outline of Final Research Achievements

I studied mathematical modeling related to grain boundary motion and its mathematical analysis. In particular, to understand the interaction between misorientations and triple junctions, I derived a new mathematical model of grain boundary motion. And I studied its well-posedness and long-time asymptotic behavior. Next, I considered nonlinear Fokker-Planck equations involving spatial inhomogeneous free energy to treat critical events. As a result, new mathematical models containing the interaction between the misorientations and the triple junctions and mathematical analysis, such as well-posedness and long-time asymptotic behavior for the models, were obtained.

Free Research Field

非線形解析学

Academic Significance and Societal Importance of the Research Achievements

結晶粒界の運動における臨界現象の理解は特異性の解析の困難さにより,未解明な点が多い.本研究では,この困難さを克服するために,臨界現象による相互作用をホワイトノイズによって表した.このモデリングは,結晶粒界における臨界現象の解明のみならず,様々な特異性の解析に新たな手法を与えるものと考えられる.また,この解析によって得られた新しい公式は結晶粒界の運動の理解を助けるとともに,結晶粒界エネルギーの性質を導くことの助けになると考えられる.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi