• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Automatic detection of level of students' engagement

Research Project

  • PDF
Project/Area Number 18K18168
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 62030:Learning support system-related
Research InstitutionOkayama University

Principal Investigator

Yucel Zeynep Yucel Zeynep  岡山大学, 自然科学研究科, 准教授 (20586250)

Project Period (FY) 2018-04-01 – 2021-03-31
KeywordsEngagement / Attention / Behavior / E-learning
Outline of Final Research Achievements

The goal of this study is to automatically recognize the level of engagement of the user of an e-learning system based on video data. If the system can recognize the decrease in level of engagement, it may be possible to support the user appropriately.

In this research, we showed that the level of engagement is reflected in the eye movements. In particular, the frequency of blinking and the duration of blinks are found to be negatively correlated with the level of engagement , and the aspect ratio of the eye and the distance between the eye and the screen are found to be positively correlated with the level of engagement. We modeled the relationship between the level of engagement and eye movements, and proposed a probabilistic method for automatic estimation of the level of engagement. It was shown that as the level of engagement increased, so did the model-based estimate of the probability of engagement.

Free Research Field

人工知能

Academic Significance and Societal Importance of the Research Achievements

学術的有意性:顔のランドマークが集中力レベルの優れた指標であることを示した。また,顔のランドマークを自動的推定のため使用できることも示した。

社会的重要性:最近、特にパンデミックによる 、eラーニングがより多くの人々によって使用されており、提案された方法を用いて、そのユーザーのパフォーマンスを向上させる可能性があると考えられている。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi