2019 Fiscal Year Final Research Report
Mathematical Reliability of Parallel Computations with Indefinite-order Operations
Project/Area Number |
18K18719
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 12:Analysis, applied mathematics, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
吉川 仁 京都大学, 情報学研究科, 准教授 (90359836)
|
Project Period (FY) |
2018-06-29 – 2020-03-31
|
Keywords | 数値解析学 / 並列計算 / 信頼性 |
Outline of Final Research Achievements |
We discussed the reliability of parallel execution of numerical schemes. The main target in numerical computations is solving systems of linear equations, and we treated the Gauss-Seidel iteration in the current research. The results are (1) construction of a mathematical model of parallel execution status, (2) proving a sufficient condition for convergence, and (3) constructing a counter example where the serial computation converges and the parallel execution diverges. Practicality of the proposed criteria is also shown by applying it to computation appeared in science and technology.
|
Free Research Field |
数値解析学
|
Academic Significance and Societal Importance of the Research Achievements |
数値計算は,現代社会を支える基盤技術であり,その理論的な信頼性の担保は必須である.従来,このような分野は理論数値解析学で扱われてきたが,昨今の急速な計算機ハードウエアの高性能化,特に並列計算環境の進歩との乖離も否めない.特に処理速度のみに着目して無秩序な並列化がおこなわれると,従来理論・手法では信頼性があったものが正しく動かず,数値計算が支える生活や技術開発の停滞が危惧される.この点に対し,本研究では数値計算の「正しさ」の枠組みを再考するとともに,大学学部教育での問題意識の提示,実用性,昨今のデータ科学における「再現性」との共通点など,多様な話題を包含する研究テーマである.
|