2022 Fiscal Year Final Research Report
Investigation of active matter mechanics by surface plasmon resonance observation
Project/Area Number |
18K18816
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 19:Fluid engineering, thermal engineering, and related fields
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
小林 一道 北海道大学, 工学研究院, 准教授 (80453140)
藤井 宏之 北海道大学, 工学研究院, 助教 (00632580)
|
Project Period (FY) |
2018-06-29 – 2023-03-31
|
Keywords | 表面プラズモン共鳴 / アクティブマター / 表面極近傍流れ場 / 濃度分布計測 / マイクロ流体システム |
Outline of Final Research Achievements |
Active matter is defined as "a material that moves by converting the external energy into kinetic energy using its own mechanism." When light is incident at a refractive index higher than the critical refractive index from the bottom of a solution on which a substrate with a thin gold film is deposited, the light is reflected at the surface of the substrate, and evanescent waves seep out to the liquid side, exciting surface plasmon resonance (SPR). Focusing on the fact that the resonance condition of SPR changes sensitively to the refractive index of materials near the substrate, the following research (observation of droplet behaviour in the near-field of the substrate by total leakage reflection measurement, observation of droplet behaviour in the near-field of the substrate by SPR measurement, and observation of dispersive matter (droplet) and dispersant behaviour by SPR measurement) were conducted to elucidate the droplet behaviour in the near-field of the substrate.
|
Free Research Field |
流体力学
|
Academic Significance and Societal Importance of the Research Achievements |
金薄膜を蒸着した基板を設置した溶液の底部から臨界屈折率以上で光を入射すると光は基板表面で全反射する.その際,液体側に染み出したエバネッセント波が,金属表面での自由電子の縦波振動である表面プラズモン共鳴(SPR)を励起する.本研究では,SPRの共鳴条件が個体表面近傍の物質の屈折率に敏感に変化することを利用し,基盤から数十nm程度の距離に存在する物質の輸送現象を約20 μs 以下の時間間隔で観察することが可能となった.光学分解能の限界(約200 nm)よりも遥かに小さい領域での輸送現象の観察が可能である本計測法は,マイクロナノ流体力学の研究分野を大きく変革する潜在性を有している.
|