2019 Fiscal Year Final Research Report
Development of time-reversal measurement technique using phase-conjugate wave for noninvasive spectral analysis of animal body
Project/Area Number |
18K18865
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | Waseda University |
Principal Investigator |
Koichi Shimizu 早稲田大学, 理工学術院(情報生産システム研究科・センター), 教授(任期付) (30125322)
|
Co-Investigator(Kenkyū-buntansha) |
加藤 祐次 北海道大学, 情報科学研究院, 助教 (50261582)
北間 正崇 北海道科学大学, 保健医療学部, 教授 (50285516)
浪田 健 京都大学, 医学研究科, 特定助教 (10571250)
|
Project Period (FY) |
2018-06-29 – 2020-03-31
|
Keywords | 位相共役波 / 位相共役光 / 時間反転 / 光散乱 / 光伝搬 / ホログラム / 空間光変調器 / 輸送方程式 |
Outline of Final Research Achievements |
For noninvasive spectral analysis in a human body, we attempted the development of a localized absorption measurement technique in a turbid medium by introducing a new time-reversal principle using a phase-conjugate light. The following accomplishments were achieved, and clear imaging of internal structure in a turbid medium became possible. (1) A new technique to generate phase-conjugate light with intensity modulation was devised. (2) An experimental system for the time-reversal phenomenon was developed and improved. (3) The scattering suppression ability of the proposed technique was evaluated. (4) The independence of the scattering suppression on the light absorption in the medium was confirmed. (5) The system performance was improved by increasing the coherent length of light source. (6) The applicability of the proposed technique to animal tissue was verified.
|
Free Research Field |
生体医工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、これまで不可能と考えられてきた強散乱体内部の局所領域分光が可能なことが、具体的に示された。これにより、従来の分光学の常識に新たな一頁を開くことができる。例えば、透過光の得られない拡散性散乱体の内部であっても、表面からの光が届く限り、内部局所領域を特定した分光が可能となる。またその成果は、本研究で直接応用をめざす生体の無侵襲生理情報計測に利用される。例えば、介在組織の影響でこれまで実用精度が得られなかった無侵襲血糖値計測や、体表からの肝(腎・膵)機能検査、脳内梗塞(出血)部位の実時間連続分光などが実現される。さらに提案手法の基本原理は、生体以外の分野へも多くの応用が考えられる。
|