• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Annual Research Report

結び目・3次元様体の量子不変量の数論的性質の研究とその応用

Research Project

Project/Area Number 19540069
Research InstitutionNiigata University

Principal Investigator

高田 敏恵  Niigata University, 自然科学系, 准教授 (40253398)

Co-Investigator(Kenkyū-buntansha) 秋山 茂樹  新潟大学, 自然科学系, 准教授 (60212445)
樋上 和弘  東京大学, 大学院・理学系研究科, 助教 (60262151)
Keywords3次元多様体 / 結び目 / 量子不変量 / 保型形式
Research Abstract

ザイフェルトホモロジー球面のSU(2)量子不変量に対しては、Lawrence, Zagier,樋上によって、保型形式との関連が知られている。本研究の目的の一つは、そのような関連が他の単純リー環に付随する量子不変量にも現れるか調べることである。SU(2)不変量の場合、保型形式との関連から、その漸近挙動に現れる大槻不変量をL-functionによってあらわすことができる。今年度の結果では、そのL-functionとの関連公式から、よりザイフェルト不変量を反映する形の公式を得ることができた。
その結果をもとに、他のA型単純リー環に付随する量子不変量についても、その漸近挙動に現れることが予想されている摂動的量子不変量(SU(2)の場合は大槻不変量)について、大槻不変量とL-functionとの関連公式に似た形で、低い次数の部分の公式を得ることができた。さらに、摂動的量子不変量の普遍量であるLMO不変量についても、これまで得られていたものより、より明確な公式を得ることができた。これらの公式はSU(2)以外の3次元多様体の量子不変量と保型形式との関連の解明に役立つと思われる。
また、結び目の量子不変量については、以下の結果が得られた。結び目の色つきジョーンズ多項式の1の冪根での値の漸近的な振る舞いは結び目補空間の双曲体積と関連すると予想されており、体積予想と呼ばれる。特に、トーラス結び目についてはこの特殊値は保型形式のアイヒラー積分を用いて表され、近保型性から漸近展開が厳密に求められる。こうした理由により、数論的・トポロジー的に色つきジョーンズ多項式の1の冪根以外での漸近的な振る舞いは大変興味深い。樋上は、八の字結び目、およびトーラス結び目に対していくつかの点について漸近極限を調べ、アレキサンダー多項式のゼロ点と密接な関係があることをみいだした。

  • Research Products

    (4 results)

All 2008 2007 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (1 results)

  • [Journal Article] A formula for the colored Jones polynomial of 2-bridge knots2008

    • Author(s)
      高田 敏恵
    • Journal Title

      Kyungpook Mathematical Journal 48

      Pages: 255-280

    • Peer Reviewed
  • [Journal Article] Ohtsuki invariants for integral homology spheres and Habiro's cyclotomic expansion

    • Author(s)
      高田 敏恵
    • Journal Title

      J. Knot Theory Ramifications (印刷中)

    • Peer Reviewed
  • [Journal Article] On the set of the logarithm of the LMO invariant for integral homology 3-spheres

    • Author(s)
      高田 敏恵
    • Journal Title

      Math. Proc. Camb. Phil. Soc. (印刷中)

    • Peer Reviewed
  • [Presentation] A complete set of relations for Ohtsuki's invariants of integral homology 3-spheres2007

    • Author(s)
      高田 敏恵
    • Organizer
      Knotting Mathematics and Art: Conference in Low Dimensional Topology and Mathematical Art
    • Place of Presentation
      アメリカ
    • Year and Date
      2007-11-02

URL: 

Published: 2010-02-04   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi