• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Annual Research Report

Geometry of loop spaces and representation theory

Research Project

Project/Area Number 19H01782
Research InstitutionKyoto University

Principal Investigator

加藤 周  京都大学, 理学研究科, 教授 (40456760)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywords半無限旗多様体 / 半無限Richardson多様体 / 安定写像 / Frobenius分裂性 / 有理特異点 / コストカ関数
Outline of Annual Research Achievements

前年度までの研究により半無限旗多様体のRichardson多様体が旗多様体の種数0の2点付きの安定写像のモジュライ空間の適切な部分空間を用いた特異点解消を持つこと、及びそれが正規かつFrobenius分裂性を持つことなどが確立されていた。今年度はそれに加えて半無限旗多様体のSchubert胞体の形式近傍の構造をいわゆるZastava空間の因子化構造を用いて解析することにより半無限旗多様体のRichardson多様体が有理特異点を持つことを証明した。この事実はBraverman-Finkelbergによる旗多様体の準写像空間の特異点に関する一般化であるが、証明は本質的に異なり無限次元の多様体の構造を効果的に用いる。この結果ににより特に半無限旗多様体上の同変直線束のRichardson多様体への制限の全コホモロジーはその直線束の安定写像の空間への引き戻しを考えてからコホモロジーを取ったものと一致することが従うため、ここから半無限旗多様体の幾何学と旗多様体の量子K群の構造の間の直接的な関係が導かれる可能性がある。

また、コストカ関数を次数つき指標として実現する対称群と多項式環のsmash積の加群の緒性質を純粋に代数的に証明することに成功した。これはいわゆるSchur-Weyl双対性により半無限旗多様体の直線束の大域切断の記述を与えるいわゆる(A型の)カレント代数の大域Weyl加群を与える重要な加群族であり、その直接証明は今まではSpringer対応に関わる幾何学を用いたものしか知られていなかった。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

大元の研究計画の核となるべき部分に関して研究上の進捗があるため。

Strategy for Future Research Activity

今年度は前年度の結果を受けて半無限旗多様体の同変K群と旗多様体の量子K群の間の関係を確立し、前年度までに得られている半無限旗多様体の同変K群とaffine Grassmann多様体の同変K群の間の自然なつながりと比較することにより古典的な量子コホモロジー環とaffine Grassmann多様体のホモロジー群の同型であるPeterson同型のK理論版へとアプローチしたい。

  • Research Products

    (2 results)

All 2022 2021

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results)

  • [Journal Article] Symmetric functions and Springer representations2022

    • Author(s)
      Syu Kato
    • Journal Title

      Indag. Math. (N.S.)

      Volume: 33 Pages: 255--278

    • DOI

      10.1016/j.indag.2021.12.010

    • Peer Reviewed
  • [Journal Article] Frobenius splitting of Schubert varieties of semi-infinite flag manifolds2021

    • Author(s)
      Syu Kato
    • Journal Title

      Forum of Mathematics, Pi

      Volume: 9 Pages: e5

    • DOI

      10.1017/fmp.2021.5

    • Peer Reviewed / Open Access

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi