• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Studies on hierarchical simulation methods using slow variables to predict the flows of soft matter

Research Project

  • PDF
Project/Area Number 19H01862
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 13040:Biophysics, chemical physics and soft matter physics-related
Research InstitutionKyoto University

Principal Investigator

Taniguchi Takashi  京都大学, 工学研究科, 准教授 (60293669)

Project Period (FY) 2019-04-01 – 2022-03-31
Keywordsマルチスケールシミュレーション / ソフトマター物理 / 階層間連携 / 高分子流体
Outline of Final Research Achievements

Polymeric materials are used in various industrial fields and have become indispensable in our daily life. To manufacture such polymer products, a process of flowing a polymer melt into a flow channel and molding it is required. But it is not easy to predict the flow because the microscopic states of polymer chains and macroscopic flow of the polymeric fluid have a strong influence on each other. In this research, to predict the polymeric flow and state of polymer chains with higher accuracy, we have developed a multi-scale simulation method that can deal simultaneously with the state of the microscopic state of polymer chains and a macroscopic flow. In addition, we have succeeded in extending the multiscale simulation method so that we can deal with the temperature distribution, the molecular weight distribution of the polymer, and a flow with a free surface.

Free Research Field

ソフトマター物理学

Academic Significance and Societal Importance of the Research Achievements

ソフトマターの非平衡応答挙動やその結果である流動挙動を予測するには,マクロな流動とミクロな状態変化を同時に扱うことが本質的に必要となる.本研究では,流体を多数の流体粒子に分割し,それぞれがミクロな高分子の状態を記述できるシミュレータを持ち,マクロな流動と結合するマルチスケールシミュレーション法を構築した.この方法により分子状態とマクロな流動を繋いで理解することできるようになったことは学術的のみならず,工学的にも価値の高い成果である。本方法は,原理的には流動のみならず,マルチスケール性が本質的な他の物理現象に対しても有効であり,これを利用してより正確な物性予測を可能とする方法論の端緒を開いた。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi