2022 Fiscal Year Final Research Report
Molecular mechanism of the novel multistep post-translational processing in the component of the bacterial flagellar type III secretion apparatus
Project/Area Number |
19K06562
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 43030:Functional biochemistry-related
|
Research Institution | Kyoto University |
Principal Investigator |
Hizukuri Yohei 京都大学, 医生物学研究所, 助教 (70568930)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 膜タンパク質 / 膜内切断プロテアーゼ / Rhomboid / べん毛 / III型分泌装置 / 翻訳後修飾 / 品質管理 / 抗体ラベリング |
Outline of Final Research Achievements |
This project aims to elucidate the post-translational multi-step processing, such as cleavages and modifications, observed in the bacterial flagellar type III secretion apparatus-related protein FliO. We analyzed the regulatory mechanism of FliO cleavages mediated by the E. coli intramembrane protease GlpG, and i) clarified common features and differences in substrate recognition mechanisms at the identified two distinct cleavage sites, ii) elucidated interaction residues between GlpG and FliO, and iii) suggested the physiological significance of FliO cleavage. We also developed the antibody labeling technique for target proteins using highly sensitive and high-affinity PA tags and applied them to analyze the kinetics of FliO cleavage and modification reactions. Furthermore, we determined new X-ray crystal structures of other family intramembrane proteases and proposed a model for the substrate accommodation and cleavage mediated by the gate structure.
|
Free Research Field |
膜タンパク質動態化学
|
Academic Significance and Societal Importance of the Research Achievements |
膜内切断プロテアーゼはアルツハイマー病やパーキンソン病等の重大な遺伝病の発症や微生物病原性等に深く関わるため、その分子的・酵素学的理解は創薬にもつながる重要な課題である。本研究ではFliOの多段階翻訳後プロセシングの一端であるGlpGによる膜内切断の分子機構を明らかにした。これは膜タンパク質の翻訳後機能調節機構の新たな側面を示すとともに、細菌の病原性発揮にも関わるべん毛構築の制御機構の解明につながり、細菌感染症治療においても意義がある。また、PAタグを用いたタンパク質の抗体ラベリング技術は、タンパク質への非破壊的な抗体結合を可能とし、高収量・高純度のタンパク質精製や構造解析にも応用しうる。
|