• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Research-status Report

Achieving Differential Privacy under Spatiotemporal Correlations

Research Project

Project/Area Number 19K20269
Research InstitutionKyoto University

Principal Investigator

曹 洋  京都大学, 情報学研究科, 特定助教 (60836344)

Project Period (FY) 2019-04-01 – 2022-03-31
KeywordsDifferential Privacy / 差分プライバシー / location privacy / 位置情報プライバシ
Outline of Annual Research Achievements

We identified several insufficiencies of the state-of-the-art DP-based location privacy models. We assessed the privacy risks of the existing location privacy protection mechanisms (LPPMs) when the adversaries know road networks. It turns out that the adversaries could infer the users' location precisely.

To prevent this, we proposed countermeasures in several aspects.
First, we studied how to represent users' privacy preferences flexibly and how to formalize the secrets about the user's spatiotemporal activities. Third, we design novel mechanisms to protect users' spatiotemporal events.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

Our studies on spatiotemporal privacy have been accepted in top conferences and journal including IEEE ICDE 2019, VLDB 2019 and IEEE TKDE.

Strategy for Future Research Activity

Motivated by COVID-19, we will study how to apply our privacy techniques in the real-world for specific purpose like epidemic surveillance.
On the other hand, we will study the theoretical properties of the proposed privacy model and a generalized version of it in order to increase the applicability.

  • Research Products

    (26 results)

All 2020 2019 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (20 results) (of which Int'l Joint Research: 11 results,  Invited: 2 results)

  • [Int'l Joint Research] Emory University(米国)

    • Country Name
      U.S.A.
    • Counterpart Institution
      Emory University
  • [Int'l Joint Research] University of Arizona(米国)

    • Country Name
      U.S.A.
    • Counterpart Institution
      University of Arizona
  • [Int'l Joint Research] Wuhan University(中国)

    • Country Name
      CHINA
    • Counterpart Institution
      Wuhan University
  • [Journal Article] Protecting Spatiotemporal Event Privacy in Continuous Location-Based Services2020

    • Author(s)
      Cao Yang、Xiao Yonghui、Xiong Li、Bai Liquan、Yoshikawa Masatoshi
    • Journal Title

      IEEE Transactions on Knowledge and Data Engineering

      Volume: - Pages: -

    • DOI

      10.1109/TKDE.2019.2963312

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Efficient logging and querying for Blockchain-based cross-site genomic dataset access audit2020

    • Author(s)
      Ma Shuaicheng, Cao Yang, Xiong Li
    • Journal Title

      BMC Medical Genomics

      Volume: 印刷中 Pages: -

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Caixia Yang ; Liang Tan ; Na Shi ; Bolei Xu ; Yang Cao ; Keping Yu2020

    • Author(s)
      Caixia Yang ; Liang Tan ; Na Shi ; Bolei Xu ; Yang Cao ; Keping Yu
    • Journal Title

      IEEE Access

      Volume: - Pages: -

    • DOI

      10.1109/ACCESS.2020.2985762

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] PCKV: Locally Differentially Private Correlated Key-Value Data Collection with Optimized Utility.2020

    • Author(s)
      Xiaolan Gu, Ming Li, Yueqiang Cheng, Li Xiong and Yang Cao
    • Organizer
      USENIX Security 2020
    • Int'l Joint Research
  • [Presentation] ID-LDP: Providing Input-Discriminative Protection for Local Differential Privacy.2020

    • Author(s)
      Xiaolan Gu, Ming Li, Li Xiong and Yang Cao
    • Organizer
      IEEE ICDE 2020
    • Int'l Joint Research
  • [Presentation] Federated SGD under Local Differential Privacy with Top-k Dimension Selection.2020

    • Author(s)
      Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, Hong Chen
    • Organizer
      25th International Conference on Database Systems for Advanced Applications (DASFAA) 2020
    • Int'l Joint Research
  • [Presentation] Voice-Indistinguishability: Protecting Voiceprint in Privacy Preserving Speech Data Release.2020

    • Author(s)
      Yaowei Han, Sheng Li, Yang Cao, Qiang Ma, Masatoshi Yoshikawa
    • Organizer
      IEEE ICME 2020 (Oral)
    • Int'l Joint Research
  • [Presentation] Money Cannot Buy Everything: Trading Mobile Data with Controllable Privacy Loss.2020

    • Author(s)
      Shuyuan Zheng, Yang Cao, Masatoshi Yoshikawa
    • Organizer
      IEEE MDM 2020
    • Int'l Joint Research
  • [Presentation] 局所差分プライバシにおけるパラメータの秘匿について2020

    • Author(s)
      高木駿, 曹洋, 吉川正俊
    • Organizer
      第 12回データ工学と情報マネジメントに関するフォーラム(DEIM2020)
  • [Presentation] 段階的学習を用いたプライバシ保護型深層生成モデル.2020

    • Author(s)
      高木駿, 高橋翼, 曹洋, 吉川正俊
    • Organizer
      第12 回データ工学と情報マネジメントに関するフォーラム(DEIM2020).
  • [Presentation] TEEに基づく差分プライバシの検証2020

    • Author(s)
      加藤郁之, 曹洋, 吉川正俊
    • Organizer
      第12 回データ工学と情報マネジメントに関するフォーラム(DEIM2020).
  • [Presentation] 局所差分プライバシを用いた行列分解によるネッ ト広告システムの提案2020

    • Author(s)
      峯田初音, 韓耀緯, 曹洋, 吉川正俊
    • Organizer
      第12 回データ工学と情報マネジメントに関するフォーラム(DEIM2020).
  • [Presentation] プライバシ保護深層学習のための SGX分散処理の提案.2020

    • Author(s)
      加納英樹,加藤郁之,ティブシメディ,阿部正幸,曹洋
    • Organizer
      2020年暗号と情報セキュリティシンポジウム(SCIS2020)
  • [Presentation] 道路ネットワークにおける位置情報プライバシを考 慮した軌跡データの評価に関する研究2020

    • Author(s)
      成瀬真, 高木駿, 曹洋, 吉川正俊
    • Organizer
      第12 回データ工学と情報マネジメントに関するフォーラム(DEIM2020).
  • [Presentation] Geo-Graph-Indistinguishability: Protecting Location Privacy for LBS over Road Networks2019

    • Author(s)
      Shun Takagi, Yang Cao, Yasuhito Asano and Masatoshi Yoshikawa
    • Organizer
      DBSec
    • Int'l Joint Research
  • [Presentation] PriSTE: From Location Privacy to Spatiotemporal Event Privacy2019

    • Author(s)
      Yang Cao, Yonghui Xiao, Li Xiong, Liquan Bai
    • Organizer
      IEEE ICDE short paper
    • Int'l Joint Research
  • [Presentation] Blockchain-based Bidirectional Updates on Fine-grained Medical Data.2019

    • Author(s)
      Chunmiao Li, Yang Cao, Zhenjiang Hu, Masatoshi Yoshikawa
    • Organizer
      BlockDM workshop at IEEE ICDE 2019
    • Int'l Joint Research
  • [Presentation] 道路ネットワークにおける位置情報プライバシー2019

    • Author(s)
      高木 駿,曹 洋,浅野 泰仁,吉川 正俊
    • Organizer
      DEIM 2019
  • [Presentation] Supporting both Range Queries and Frequency Estimation with Local Differential Privacy2019

    • Author(s)
      Xiaolan Gu, Ming Li, Yang Cao, Li Xiong
    • Organizer
      IEEE Conference on Communications and Network Security (CNS) 2019
    • Int'l Joint Research
  • [Presentation] When and where do you want to hide? Recommendation of location privacy preferences with local differential privacy.2019

    • Author(s)
      Maho Asada, Masatoshi Yoshikawa, Yang Cao
    • Organizer
      DBSec 2019
    • Int'l Joint Research
  • [Presentation] PriSTE: Protecting Spatiotemporal Event Privacy in Continuous Location-Based Services.2019

    • Author(s)
      Yang Cao, Yonghui Xiao, Li Xiong, Liquan Bai, Masatoshi Yoshikawa
    • Organizer
      VLDB 2019, demo track
    • Int'l Joint Research
  • [Presentation] Towards Decentralized and Privacy-Preserving Personal Data Market2019

    • Author(s)
      Yang Cao
    • Organizer
      IEEE Tokyo Blockchain Workshop 2019
    • Invited
  • [Presentation] From Location Privacy to Spatiotemporal Event Privacy2019

    • Author(s)
      Yang Cao
    • Organizer
      Wuhan University
    • Invited

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi