2022 Fiscal Year Research-status Report
真性粘菌の数理モデルをリザバーとした極端な一般化能力を持つ機械学習手法の開発
Project/Area Number |
19K20388
|
Research Institution | Kobe University |
Principal Investigator |
谷 伊織 神戸大学, 情報基盤センター, 助教 (70751379)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | 真性粘菌 / リザバー計算 |
Outline of Annual Research Achievements |
本研究は真性粘菌 Physarum polycephalum の変形体の挙動を模した数理モデルを利用して機械学習を行うことを目的とする.具体的には物理リザバー計算におけるリザバーとして真性粘菌のモデルを利用することで,少量の学習パラメータのみで効率的な機械学習機構を提案することを目指すものである. リザバー計算は再帰的ニューラルネットワークにおける特徴の抽出・記憶を学習可能なネットワークに担わせるのではなく,リザバーと呼ばれる結合重みが固定されたネットワークにおいて実施することで,調整すべきパラメータ数を抑制し,高速・高効率な学習を実現しようとする分野であり,近年ではリザバーとしてニューラルネットワークではなくさまざまな物理系を利用しようとする物理リザバー計算の研究が進んでいる. 本研究では真性粘菌モデルがリザバーとして利用可能であることを確認するため,その計算能力を見積もった.一次元セルオートマトンを用いたリザバー計算についての先行研究と同様の手法で,真性粘菌モデルを環状の平面空間に封入し自由に運動させた.この際,定期的に環状平面の局所領域における原型質量=真性粘菌の厚みを計測し,原形質流動の時空間パターンを得た.これらの時空間パターンのパワースペクトルにおいて冪分布が得られることを確認した.これはリザバー計算において対象が基本的な計算能力を有することを示す指標であり,真性粘菌モデルをリザバーとして利用できる可能性を強く示している.
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
真性粘菌のモデルについて,当該研究課題と並行的に実施している研究において,従来モデルよりも再現性に優れたモデルが開発されたため,新しいモデルを用いて基礎的な検証を行うこととした.
|
Strategy for Future Research Activity |
本研究が提案する真性粘菌モデルがリザバーとしての基礎的な計算能力を示すことが示されたので,今後は実際にこれらを用いた具体的な計算課題に適用して,その能力を見積もる予定である.具体的には5ビット記憶タスクのような再帰的ネットワークの基本的な課題に適用する予定である. 現在の課題として,真性粘菌リザバーに対してインプットを与える適当な手法が明確ではない点が挙げられる.これについては,一次元セルオートマトンを用いたリザバー計算に関する諸研究を参照しつつ,必要であればモデルの改修等を行い,有効な方法を検討する.
|
Causes of Carryover |
新型コロナウィルスの感染状況等を鑑み,国際会議等への参加を見送ったことなどによる. 次年度においては,主として研究成果の公表にかかる目的において利用する予定である.
|
Research Products
(1 results)