• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Research for high-efficiency plasmon conversion using 3D-photonic nanographene and application to photo-catalysis

Research Project

  • PDF
Project/Area Number 19K22226
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
Research InstitutionUniversity of Tsukuba

Principal Investigator

Fujita Jun-ichi  筑波大学, 数理物質系, 教授 (10361320)

Co-Investigator(Kenkyū-buntansha) 伊藤 良一  筑波大学, 数理物質系, 准教授 (90700170)
Project Period (FY) 2019-06-28 – 2022-03-31
Keywordsプラズモン共鳴 / 3次元グラフェン / 2光子吸収 / 水素発生 / 光触媒反応 / 水の分解 / 酸素発生
Outline of Final Research Achievements

Titanium oxide and metal-encapsulated three-dimensional graphene function as an effective photocatalyst for hydrogen production, but their activation energy requires photon energy of 3.2 eV (385 nm) or higher.
In this study, we investigated the catalytic reaction mechanism of metal-encapsulated three-dimensional graphene, and used two-photon absorption in a strong re-radiation field (proximity field) realized by a zone plate-type two-dimensional photonic structure. It was demonstrated that highly efficient hydrogen generation can occur even in the infrared region light where no photocatalytic reaction occurs.

Free Research Field

材料物性、量子ビーム

Academic Significance and Societal Importance of the Research Achievements

本研究では、ゾーンプレート型プラズモン収束回路を用いることで、ゾーン中央からの強い再輻射場の中で2光子吸収光触媒反応を実現する技術を実証した。これまで光触媒反応に利用できないとされていた赤外領域光であっても、水素発生のための光源としての利用が可能となり、これからの持続型水素社会を実現する上での重要な要素技術が開発できた。また、プラズモン制御光学の新しい分野を開拓するとともに、関連する物理計測、化学反応解析など多くの学術分野で幅広く利用され得る科学基盤技術になると期待される。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi