• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Research-status Report

機械学習によるプログラミング言語文法の推定

Research Project

Project/Area Number 19K22840
Research InstitutionThe University of Tokyo

Principal Investigator

千葉 滋  東京大学, 大学院情報理工学系研究科, 教授 (80282713)

Project Period (FY) 2019-06-28 – 2023-03-31
Keywordsプログラミング言語 / ソフトウエア工学 / 機械学習
Outline of Annual Research Achievements

大量のプログラム例を教師なしで機械学習することである種の文法構造をモデルが獲得することができる。この技術の応用先を研究し、不適切にモジュール化されたプログラムの部分を自動的に識別する手法を開発した。プログラムを適切にモジュール化することは、誤りのない高品質なプログラムを開発するためには重要であることは良く知られている。また現代においてはプログラムがいったん完成した後も機能拡張を続けていかなければならないことも多い。そのような機能拡張を効率よくまた高品質におこなえるようにするためにプログラムの保守性を高める必要があるが、適切なモジュール化はそのためにも必須である。しかしながら現在、プログラムの適切なモジュール化はソフトウェア技術者個人の技量によるところが大きく、とくに多人数で開発する場合にはリーダ格の技術者が他の技術者が書いたプログラムを毎回確認することとし、正しくモジュール化されていない場合には修正するように促すのが一般的である。このように経験豊富な技術者が人手によって確認する現在のやり方は効率的とは言い難く、ソフトウェア技術者のチーム全体の開発効率を下げる一因となっている。本研究の成果はこのような確認を自動化することでチーム全体の開発効率を上げることが期待される。本研究では実験によって、研究成果の手法によって実際に不適切なモジュール化を発見して指摘できることを明らかにした。適切なモジュール化とは必ずしも一般的に基準が定まるものではなく、個々のソフトウェア・プロジェクトによって異なるものである。このため単純な機械学習ではうまく目的を達成できず、いわゆる few-shot 学習・分類の技術を応用しなければならない。ソフトウェア工学の分野でも few-shot 学習・分類の技術が有用であることを示したことも本研究の成果である。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

昨年度の研究成果をさらに発展させて実用的な応用につなげることができた。現在、研究成果の論文発表をおこなう準備をしている段階で、予定よりも若干遅れている。予定では年度内に論文発表まで終える計画であった。

Strategy for Future Research Activity

現在準備中の論文を完成させ研究成果を広く世に発表する。

Causes of Carryover

コロナ禍が収束せず予定していた出張ができなくなったこと、研究が進み追加の実験をおこなった後に論文発表することとしたことにより次年度使用額が生じた。次年度使用額は論文発表に必要な費用と研究に参加している大学院生に対する謝金に支出する。

Remarks

「コード内にコメントを入れる時に適切なコメントを例示するシステムの開発」は日本ソフトウェア科学会第38回大会学生奨励賞を受賞。

  • Research Products

    (3 results)

All 2021

All Presentation (3 results)

  • [Presentation] Java システムにおけるパッケージ誤りのニューラルネットワークを用いた検出手法2021

    • Author(s)
      依田 和樹, 中丸 智貴, 穐山 空道, 山崎 徹郎, 千葉 滋
    • Organizer
      日本ソフトウェア科学会第38回大会
  • [Presentation] Attempts on using syntax trees to improve programming language translation quality by machine learning2021

    • Author(s)
      Feng Dai, Shigeru Chiba
    • Organizer
      38th JSSST Conference
  • [Presentation] コード内にコメントを入れる時に適切なコメントを例示するシステムの開発2021

    • Author(s)
      白石 誠, 千葉 滋
    • Organizer
      日本ソフトウェア科学会第38回大会

URL: 

Published: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi