• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Statistical Hypothesis Testing for Roughness of Volatility

Research Project

  • PDF
Project/Area Number 19K23224
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0107:Economics, business administration, and related fields
Research InstitutionHiroshima University

Principal Investigator

Takabatake Tetsuya  広島大学, 人間社会科学研究科(社), 助教 (80846949)

Project Period (FY) 2019-08-30 – 2023-03-31
Keywords非整数Brown運動 / 高頻度観測 / 観測誤差 / 確率ボラティリティ
Outline of Final Research Achievements

In order to accurately estimate the Hurst index and volatility of the driving noise of the log-volatility process, which is a latent variable, from the log-realized variance time series data, we developed a theory of estimating the Hurst index and volatility of the driving noise under noisy observations. In this study, we analyze the local asymptotic behavior of the likelihood ratio random fields under the condition that high-frequently observed data of the fractional Brownian motion contains observational errors, so that we succeeded to derive optimal convergence rates and asymptotic variances of estimators and construct an estimator that satisfies the asymptotic optimality.

Free Research Field

数理統計学

Academic Significance and Societal Importance of the Research Achievements

本研究で行なった高頻度観測データからスケール則や観測誤差の構造を推定する手法の開発、特に最適な収束レートや漸近分散を満たす推定量の開発は幾つかの技術的困難によりこれまで未解決な問題であったため、本研究の学術的意義は大きいと考える。また上述したファイナンスの問題に限らず、計量経済学や工学などの分野で観測される実際のデータには、推定したい確率過程とは別の確率過程が観測誤差として含まれる状況がごく自然に生じるため、様々な分野への応用が今後期待できる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi