• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Enhancement of Variational Data Assimilation Using Observation Big Data

Research Project

  • PDF
Project/Area Number 19K23467
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0204:Astronomy, earth and planetary science, and related fields
Research InstitutionJapan, Meteorological Research Institute

Principal Investigator

Fujita Tadashi  気象庁気象研究所, 気象予報研究部, 室長 (50847283)

Project Period (FY) 2019-08-30 – 2023-03-31
Keywords観測誤差相関 / 流れに依存する背景誤差 / データ同化 / 高頻度高密度観測 / ドップラー速度
Outline of Final Research Achievements

We investigated the enhancement of data assimilation scheme for the effective use of high-frequency, high-density observation data in numerical weather prediction. The time and space correlations of Doppler velocity observation error were statistically diagnosed and modeled to be used in variational data assimilation. An experiment using a simple variational data assimilation scheme showed that the detailed information of high-density observations was properly incorporated into analyses by taking into account the observation error correlation. Then, we conducted an experiment assimilating Doppler velocity observations considering observation error correlations using a four-dimensional variational data assimilation scheme with the flow-dependent background error. The experiment showed that the flow-dependent background error was important for extracting detailed information from high-frequency, high-density observation data according to the atmospheric situations.

Free Research Field

データ同化

Academic Significance and Societal Importance of the Research Achievements

本研究では、日本の高度なレーダー観測技術により蓄積された高品質なドップラー速度データを用いて、観測誤差の時間空間相関の分析を行った。ドップラー速度について、観測誤差の空間相関に加えて、時間相関についても考慮した取り組みはこれまで見られない。さらに、データ同化手法として「流れに依存する背景誤差」を導入した四次元変分法を用い、観測誤差と背景誤差を共に高度化したシステムを用いた。このような先進的な手法による高頻度高密度データ同化技術の新しい知見は、時間空間スケールが小さい集中豪雨をはじめとする顕著現象を中心に、数値予報の予測精度向上に資するものである。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi