2010 Fiscal Year Self-evaluation Report
K3 surfaces and related algebraic varieties
Project/Area Number |
20340002
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hiroshima University |
Principal Investigator |
SHIMADA Ichiro Hiroshima University, 大学院・理学研究科, 教授 (10235616)
|
Project Period (FY) |
2008 – 2011
|
Keywords | K3曲面 / 6次曲線 / 基本群 / 格子理論 / 超越格子 / 超特異性 |
Research Abstract |
本研究の目的は,K3曲面に関する多種多様な問題に対して次の研究活動を行うことにより,従来の研究をさらに大規模に発展させるとともに異なる研究方法の間との相互作用をうながすことである まず,格子理論的計算に還元できる部分を確定する.還元できる部分に対しては,汎用性の高いアルゴリズムを書いて計算機に実行させる,できるだけ多数の研究集会に参加して格子理論と計算機の組み合わせの強力さを宣伝し,多くの研究者を格子理論と計算機によるK3曲面の研究に巻き込むことを目指す 還元できない部分,とくに具体的な定義方程式を必要とする問題に対しては,グレブナー基底を用いたアプローチを試みる.さらに,格子理論的データ以外の量(クリスタル周期,ブラウア群など)を計算機で取り扱う手法を開発する
|