• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Fundamental technologies for scalable photonic quantum information processing based on nonlinear optics

Research Project

  • PDF
Project/Area Number 20H01839
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
Research InstitutionOsaka University

Principal Investigator

Ikuta Rikizo  大阪大学, 大学院基礎工学研究科, 准教授 (90626475)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywords量子情報 / 量子インターネット / 量子周波数コム / 量子周波数変換 / 非線形光学 / 導波路共振器 / 波長分割多重 / 光量子演算
Outline of Final Research Achievements

Nonlinear interactions among photons are useful for photonic quantum information processing, but the strength of these interactions is small. Enhancement of the nonlinearity is achieved by optical cavities. It is important to design an appropriate cavity for each application, since cavities have the effect of severely limiting the bandwidth of nonlinearity. In this study, we explore quantum manipulation of photons using an atypical singly resonant nonlinear optics that confines only one of the light involved in nonlinear interaction. We have established fundamental technologies for large-scale photonic quantum information processing, including the generation and distribution of polarization-entangled photon pairs with much larger frequency multiplicity than previously reported, demonstration of optical frequency tweezers for precise manipulation of arbitrary sites on the frequency domain, and proposal of quantum computation using quantum frequency combs.

Free Research Field

量子情報処理

Academic Significance and Societal Importance of the Research Achievements

本研究では、異なる周波数モードの重ね合わせである量子周波数コムの生成や制御技術の開拓を行った。周波数自由度が、人類が最も精密に測定できる物理量であること、大規模ヒルベルト空間へ展開できること、既存の光周波数多重技術と親和性が高いこと、など潜在的に多数のメリットをもつことは知られていたが、本研究で実証した大規模な量子周波数コムの生成・配送や周波数ピンセットといった精密周波数制御の開発はこうしたメリットを活かした光量子情報処理の可能性を後押しするものであり、大規模化に向けた基盤技術となる。また、実験に用いた単共鳴型非線形光学は様々な用途に用いることができ、さらなる新奇量子制御への発展が期待できる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi