• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Efficient Lattice Basis Reduction with Sieving and Enumeration

Research Project

  • PDF
Project/Area Number 20H04190
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60070:Information security-related
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Teruya Tadanori  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 主任研究員 (20636972)

Co-Investigator(Kenkyū-buntansha) 松田 源立  成蹊大学, 理工学部, 准教授 (40433700)
池上 努  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 主任研究員 (80245612)
柏原 賢二  東京大学, 大学院総合文化研究科, 助教 (70282514)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywords格子暗号 / 格子基底簡約 / 格子点列挙 / 格子ふるい
Outline of Final Research Achievements

We proposed an efficient method for the sampling algorithm, which is used as a component of a fast solver for the shortest vector problem (SVP) and the approximate SVP of lattices. In addition to the randomness assumption, we introduce a new assumption called the best search assumption that assumes a relationship exists between the distribution of lengths of lattice points output by the sampling algorithm and the statistics of that distribution. Then we described a method to find a search space that maximizes the probability of the sampling algorithm outputting short lattice points.
We also studied G6K and its GPU extension called G6K-GPU, the world record solver implementations in the SVP Challenge. We considered some ideas for methods to find short lattice points.

Free Research Field

暗号技術

Academic Significance and Societal Importance of the Research Achievements

格子暗号は、耐量子計算機暗号(PQC)の一つであり、格子問題の困難性を安全性の根拠とする。最短ベクトル問題(SVP)およびその緩和版である近似SVPは代表的な格子問題であり、(近似)SVPの高速解法として、格子基底簡約と格子ふるい、格子点列挙の三つの方法を組み合わせた解法が提案されている。本研究は、主に格子点列挙の亜種であるサンプリング法の効率化について研究成果を得た。これにより、(近似)SVPの解法のさらなる高速化と、格子暗号の安全性評価への貢献が期待される。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi