• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

Research and development of nonlinear Selective Inference for high-dimensional and small number of samples data

Research Project

Project/Area Number 20H04243
Research InstitutionKyoto University

Principal Investigator

山田 誠  京都大学, 情報学研究科, 准教授 (00581323)

Co-Investigator(Kenkyū-buntansha) 下平 英寿  京都大学, 情報学研究科, 教授 (00290867)
POIGNARD BENJAMIN  大阪大学, 大学院経済学研究科, 講師 (40845252)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywords選択的推論 / 木構造最適輸送距離
Outline of Annual Research Achievements

本年度は、カーネル法に基づいた選択的推論手法を提案し, 提案手法をバイオデータに適用した. そして, 機械学習の難関国際会議であるAISTATS2022にて報告した [1]. 上記の結果に加え, 高次元データ解析手法を複数提案した. 具体的には, 木構造最適輸送に基づいたBarycenterの推定手法の提案 [2], 木構造最適輸送距離の学習方法を提案した [3]. これらの研究成果に関しても, AISTATS2022とTransactions on Machine Learning (TMLR)にそれぞれ報告した.

[1] Benjamin Poignard, Peter J. Naylor, Hector Climente-Gonzlez, Makoto Yamada: Feature screening with kernel knockoffs. AISTATS 2022: 1935-1974
[2]Yuki Takezawa, Ryoma Sato, Zornitsa Kozareva, Sujith Ravi, Makoto Yamada: Fixed Support Tree-Sliced Wasserstein Barycenter. AISTATS 2022: 1120-1137
[3]Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han Bao, Zornitsa Kozareva, Sujith Ravi:
Approximating 1-Wasserstein Distance with Trees. TMLR 2022

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

前年度までに一つの目標であったHSIC Lassoの選択的推論の方法を提案することができており, 今年度はKnockoff filterを用いたカーネル法に基づいた選択的推論手法を提案することができた. したがって, 研究は順調に進展している.

Strategy for Future Research Activity

今年度は, knockoff filterとカーネル法に基づいたシンプルな選択的推論手法を提案した. 本年度は, knockoff filterとHSIC Lassoを融合したより検出力の高い選択的推論手法の研究に取り組む. さらに提案した方法の応用研究も実施する予定である.

  • Research Products

    (5 results)

All 2022

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 4 results)

  • [Journal Article] Approximating 1-Wasserstein Distance with Trees.2022

    • Author(s)
      Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han Bao, Zornitsa Kozareva, Sujith Ravi
    • Journal Title

      Transactions on Machine Learning Research

      Volume: 0 Pages: 0

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Feature screening with kernel knockoffs2022

    • Author(s)
      Benjamin Poignard, Peter J. Naylor, Hector Climente-Gonzalez, Makoto Yamada
    • Organizer
      AISTATS 2022
    • Int'l Joint Research
  • [Presentation] Fixed Support Tree-Sliced Wasserstein Barycenter2022

    • Author(s)
      Yuki Takezawa, Ryoma Sato, Zornitsa Kozareva, Sujith Ravi, Makoto Yamada
    • Organizer
      AISTATS 2022
    • Int'l Joint Research
  • [Presentation] Re-evaluating Word Mover’s Distance2022

    • Author(s)
      Ryoma Sato, Makoto Yamada, Hisashi Kashima
    • Organizer
      ICML 2022
    • Int'l Joint Research
  • [Presentation] Feature-Robust Optimal Transport for High-Dimensional Data.2022

    • Author(s)
      Mathis Petrovich, Chao Liang, Ryoma Sato, Yanbin Liu, Yao-Hung Hubert Tsai, Linchao Zhu, Yi Yang, Ruslan Salakhutdinov, Makoto Yamada
    • Organizer
      ECML 2022
    • Int'l Joint Research

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi