• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Three dimensional nanostructure fabrication by using protein crystals as the templete

Research Project

  • PDF
Project/Area Number 20K05269
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 28030:Nanomaterials-related
Research InstitutionJosai University

Principal Investigator

UWADA Takayuki  城西大学, 理学部, 准教授 (30455448)

Co-Investigator(Kenkyū-buntansha) 鍋谷 悠  宮崎大学, 工学部, 准教授 (50457826)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywordsタンパク質結晶 / 多孔質材料 / プラズモニックナノ粒子 / フォトンアップコンバージョン / 共鳴エネルギー移動 / マイクロレーザー / 光還元 / ナノ粒子パターニング
Outline of Final Research Achievements

Protein crystals possess distinguished three-dimensional structures that contain well ordered nanoporous solvent channels that are typically 0.5-10 nm in diameter. From this viewpoint, structural similarities to nanoporous materials, such as zeolite, mesoporous silica, and metal organic frameworks (MOF), are noteworthy. It is expected that similarly to such nanoporous materials, protein crystals will be employed in a broader range of applications. In this prject, we aim to fabricate novel three-dimensional nanostructured materials by exploiting the function of protein crystals. We have found that resonant energy transfer and triplet-triplet annihilation photon upconversion in the nanopores of protein crystals by loading functional molecules in high density. In addition, we have fabricated gold/silver nanoparticles in the nanopores, which can be accelerated by photo-irradiation. Such foundings are based on the characteristics of the protein crystals.

Free Research Field

ナノ材料科学

Academic Significance and Societal Importance of the Research Achievements

タンパク質が三次元的に集積して作る結晶がもつ三次元的なnmサイズの穴(細孔)に着目し、ゼオライトやメソポーラスシリカ、最近注目のMOF(金属有機構造体)と同様の多孔質材料として活用できるのではと考えた。多孔質材料であるためそこには細孔よりも小さな分子を導入できる。単に導入できるだけでなく、細孔内に機能性分子を高密度に集積することで分子がバラバラな状態ではありえない現象が発現すると明らかにした。また、細孔内で化学反応を起こしナノ粒子を作った。これもまた細孔内でナノ粒子の原材料が高密度に集積しているからこそであり、すなわちタンパク質結晶が新たな多孔質材料であると示した。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi