• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of an index of intramuscular fat tissue using frequency analysis of ultrasound images

Research Project

  • PDF
Project/Area Number 20K11271
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 59010:Rehabilitation science-related
Research InstitutionKansai Medical University

Principal Investigator

FUKUMOTO Yoshihiro  関西医科大学, リハビリテーション学部, 准教授 (30636121)

Co-Investigator(Kenkyū-buntansha) 市橋 則明  京都大学, 医学研究科, 教授 (50203104)
池添 冬芽  関西医科大学, リハビリテーション学部, 教授 (10263146)
浅井 剛  関西医科大学, リハビリテーション学部, 准教授 (50411880)
谷口 匡史  京都大学, 医学研究科, 助教 (00827701)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywords超音波 / 筋内脂肪量 / 筋輝度 / フォーカス
Outline of Final Research Achievements

As the population continues to age, the loss of muscle mass and the accumulation of intramuscular fat have become significant concerns. Ultrasound imaging systems offer a valuable tool for measuring muscle thickness and muscle echo intensity, which can indicate intramuscular fat tissue. However, their accuracy is not always optimal. The present study demonstrated several methods to improve the accuracy of prediction of intramuscular fat tissue and muscle mass by muscle echo intensity and muscle thickness. The results of this study are expected to be widely applicable in numerous clinical settings and in the community for the rapid assessment of older adults and patients, as well as for research into future treatment methods. This is of great social significance.

Free Research Field

理学療法学

Academic Significance and Societal Importance of the Research Achievements

高齢化の進展に伴い、加齢に伴う筋量減少や筋内脂肪の増加は大きな問題となっている。超音波画像装置は、筋量指標である筋厚や筋内脂肪指標である筋輝度を安価・簡便・非侵襲的に測定可能という大きな利点があるが、その精度は決して高くないという問題点があった。筋輝度や筋厚による筋内脂肪割合や筋量の予測精度を高める手法を示した本研究は、多くの臨床現場や地域における高齢者や有疾患者の迅速なアセスメントや、今後の治療方法のための研究で幅広く応用されることが期待され、社会的意義は大きいと考える。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi