• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Distribution Matching Principle for Machine Learning Based Molecular Simulation

Research Project

  • PDF
Project/Area Number 20K20907
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 13:Condensed matter physics and related fields
Research InstitutionNational Institutes for Quantum Science and Technology

Principal Investigator

Sakuraba Shun  国立研究開発法人量子科学技術研究開発機構, 量子生命科学研究所, 主幹研究員 (90647380)

Project Period (FY) 2020-07-30 – 2024-03-31
Keywords記号回帰 / 分子動力学シミュレーション / パラメータサーチ
Outline of Final Research Achievements

Classical molecular dynamics (MD) simulations enable us to analyze various physicochemical properties of molecules by reproducing and simulating molecular structures on computers. In classical MD simulations, the function of the force field that describes the interactions between atoms (or groups of atoms), as well as the parameters of the force field function, determines the behavior of the molecules in the computer. Finding appropriate functions and their parameters is thus vital in the simulation. In this research, I aimed to find force field functions with low calculation costs by computer. I implemented a symbolic regression algorithm fitted to the molecular simulation and searched the functions. In an existing dataset of quantum chemical calculation, functions that fit well with the dataset were successfully found.

Free Research Field

計算科学

Academic Significance and Societal Importance of the Research Achievements

これまで、分子シミュレーションの力場の提案は人の直感に基づく関数系の提案と、長い時間を掛けた人手によるパラメータ改善の試行錯誤により実現されてきた。本研究では実際のデータからnon-trivialな関数系の「発見」を行っており、分子シミュレーションの力場の提案をデータ中心に行う一助となることが期待される。これにより、現在は高コストな計算(量子化学計算、全原子シミュレーション)がより低コストな計算(古典、陰溶媒、粗視化)で近似できるシステマティックな手法が整備され、階層的なシミュレーションがより容易に、低コストで、大規模に実現されていくことが期待できる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi