• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Annual Research Report

マッチング問題の代数的拡張に対する組合せ的アプローチ

Research Project

Project/Area Number 20K23323
Research InstitutionKyoto University

Principal Investigator

岩政 勇仁  京都大学, 情報学研究科, 助教 (70854602)

Project Period (FY) 2020-09-11 – 2024-03-31
KeywordsEdmonds問題 / 重み付きEdmonds問題 / 非可換Edmonds問題 / 重み付き非可換Edmonds問題
Outline of Annual Research Achievements

・2×2型分割多項式行列の小行列式最大次数列を求める組合せ的強多項式時間アルゴリズムを提案した論文"A combinatorial algorithm for computing the degree of the determinant of a generic partitioned polynomial matrix with 2×2 submatrices"の成果をSIAM Conference on Optimization (OP23)で発表し,多数の有用なフィードバックを得た.
・線形シンボリック単項行列 (linear symbolic monomial matrix) の小Dieudonne行列式最大次数列を求める新たな強多項式時間アルゴリズムを提案した.この成果は "Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices" という論文にまとめ,現在査読付き国際論文誌に投稿中である.

  • Research Products

    (2 results)

All 2023 Other

All Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Remarks (1 results)

  • [Presentation] A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with 2x2 submatrices2023

    • Author(s)
      Yuni Iwamasa
    • Organizer
      SIAM Conference on Optimization (OP23)
    • Int'l Joint Research / Invited
  • [Remarks] 研究成果

    • URL

      https://www.lab2.kuis.kyoto-u.ac.jp/iwamasa/ja/research.html

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi