2013 Fiscal Year Final Research Report
Studies on Floer thoery, theory of holomorphic curves and symplectic structures, contact structures
Project/Area Number |
21244002
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kyoto University (2012-2013) Hokkaido University (2009-2011) |
Principal Investigator |
ONO Kaoru 京都大学, 数理解析研究所, 教授 (20204232)
|
Co-Investigator(Kenkyū-buntansha) |
IZUMIYA Shyuichi 北海道大学, 大学院・理学研究院, 教授 (80127422)
JINZENJI Masao 北海道大学, 大学院・理学研究院, 准教授 (20322795)
MATSUSHITA Daisuke 北海道大学, 大学院・理学研究院, 准教授 (20204232)
ISHIKAWA Goo 北海道大学, 大学院・理学研究院, 教授 (50176161)
YAMAGUCHI Keizo 北海道大学, 大学院・理学研究院, 教授 (00113639)
MASUDA Mikiya 京都大学, 数理解析研究所, 教授 (20204232)
TAKAKURA Tatsuru 中央大学, 理工学部, 准教授 (30268974)
|
Project Period (FY) |
2009-04-01 – 2014-03-31
|
Keywords | symplectic 構造 / Floer 理論 / 正則曲線 / Lagrange 部分多様体 / A-無限大構造 / トーリック多様体 |
Research Abstract |
Symplectic structure is a geometric structure, which appeared in the understanding of Hamilton's equation of motion. In recent years, there has been profound development in the geometric study of symplectic structures. In particular, combined with the mathematical study on mirror symmetry, symplectic geometry attracts attentions from many researchers. The investigator has been working on Floer theory, which plays a significant role in symplectic geometry, and its applications. In this research project, we studied Floer theory for Lagrangian torus fibers in toric manifold in a concrete way and obtained various interesting results.
|