Research Abstract |
本年度は,(1)グラフ系列及び(2)多次元構造データを対象とした新たな関連パターン発見手法の開発を行った.また,複合構造データマイニングの拡張として,数値情報を含む構造データである,(a)数値属性集合を頂点に持つネットワークデータ,(b)時間情報を伴う区間イベント系列データ,(c)グラフとその構成要素に重みが付与されたグラフ,のそれぞれを対象に,特徴的パターン発見アルゴリズムの開発を行った. グラフ系列からの関連複合構造パターン発見に関しては,パターンの評価基準として,(a)系列パターンの各構成要素の大きさ,(b)互いに関連しあう構成要素数,(c)関連の強さを表す相関係数の3つのパラメタからなる関連性基準を提案した.なおこの基準は,各構成要素を頂点,それらの関連性を辺とする関連性グラフにおけるK-plexの概念に相当するものであり,これまでに開発したクリークに基づく関連性基準の一種の緩和となっている.また,この新たな関連性基準に基づく特徴的部分グラフ系列発見アルゴリズムCorSSSを開発した.CorSSSでは,パターン間の一般・特殊の関係に着目した木データ構造を用いることで,効果的なパターン発見を実現している. 一方,多次元構造データを対象とした関連パターン集合発見に関しては,グラフデータを対象としたアルゴリズムHSGを多次元構造データへと拡張するとともに,より特徴的なパターン集合のみを抽出するために,飽和性(パターンの大きさに関する極大性)を満たすパターン集合のみを発見するアルゴリズムCHPMSを開発した.CHPMSでは,パターン間及びパターン集合間の一般・特殊の関係を考慮した木データ構造を用いるとともに,頻度,関連性,飽和性のそれぞれに着目した枝刈りを導入することで,効率的なパターン集合発見を実現している.
|