2023 Fiscal Year Final Research Report
Multiscale Transport Enhancement of Water and Oxygen for High Power Output PEM Fuel Cells
Project/Area Number |
21H01254
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Hokkaido University |
Principal Investigator |
Tabe Yutaka 北海道大学, 工学研究院, 教授 (80374578)
|
Co-Investigator(Kenkyū-buntansha) |
植村 豪 北海道大学, 工学研究院, 准教授 (70515163)
境田 悟志 茨城大学, 理工学研究科(工学野), 講師 (40816170)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 熱工学 / 燃料電池 |
Outline of Final Research Achievements |
The objective of this study is to elucidate the cell structure and operating conditions that can achieve consistent multiscale liquid water and oxygen transport from the nano- to sub-millimeter scale, catalyst layer to gas diffusion layer of PEFCs. A method was developed to separate the oxygen transport resistance increased by water accumulation into components depending on scale of the pores, investigating the methods to decrease the resistance components. The results showed effectiveness of the separation method to evaluate the effects of multiscale accumulated water respectively on the loss of each oxygen transport, and presented the cell structure that can enhance the liquid water and oxygen transport in each component.
|
Free Research Field |
エネルギー変換工学
|
Academic Significance and Societal Importance of the Research Achievements |
電池内のマルチスケール水輸送の相互影響を考慮した上での電池性能低下の支配因子解析は未だ十分に行われておらず、凝縮水影響を考慮した酸素輸送損失分離は、微細多孔体内の水・酸素輸送促進のブレークスルーに貢献できる。また、酸素輸送抵抗の大幅低減により少ない触媒量でも高発電性能を維持できる触媒層構造は、今後開発される新たな触媒に対しても有効な方策であり、今後の燃料電池の研究発展、普及促進に寄与する知見となる。
|