• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Super multi-musculoskeletal soft robotics that combines musculoskeletal potential method and soft actuator

Research Project

  • PDF
Project/Area Number 21H03523
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61050:Intelligent robotics-related
Research InstitutionChukyo University

Principal Investigator

Hitoshi Kino  中京大学, 工学部, 教授 (50293816)

Co-Investigator(Kenkyū-buntansha) 槇田 諭  福岡工業大学, 工学部, 准教授 (60580868)
石原 彰人  中京大学, 工学部, 教授 (80387620)
田原 健二  九州大学, 工学研究院, 教授 (80392033)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords生体システム / バイオミメティクス / 運動生成
Outline of Final Research Achievements

Our objective was to expand the musculoskeletal potential method to develop a soft robot featuring a super-multi-muscular skeletal system, which seamlessly integrates three key aspects: musculoskeletal structure, muscle flexibility, and signal processing from the central nervous system. To achieve this, we introduced a muscle viscoelastic model and designed a system where muscle tension serves as muscle activation input. Additionally, we conducted mathematical analysis on a system incorporating multi-joint muscles, elucidating the conditions under which these muscles operate optimally. We investigated posture control of the upper arm utilizing a digital human model that faithfully replicates human body structure with high precision. Through this analysis, we validated the efficacy of our approach using the digital human model. Furthermore, we expanded upon the shooting method and proposed a trajectory generation technique based on iterative trials, confirming its effectiveness.

Free Research Field

ロボット工学

Academic Significance and Societal Importance of the Research Achievements

超多筋骨格システムに対し,筋骨格の構造特性と筋肉の柔軟性,中枢神経系からの信号処理という3つを調和した運動生成法の基幹として筋骨格ポテンシャル法の有効範囲を大きく広げた点は大きな意味を持つ.具体的な学術的意義は,超多自由度システムに対する有効性を示したこと,筋肉の粘弾性を考慮した生物に近いシステムへの有用性を示したこと,人間の動作生成に類似する繰り返し学習制御による動作生成が実現できたことは,次世代の超多筋骨格ヒューマノイドロボットの運動生成に応用でき,人間のように柔軟・器用な新しいロボットシステムを創造できる.また,内骨格生物を模倣したバイオミメティクス分野の機械設計や制御設計に応用できる.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi