• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

Mathematical Theory of Partial Differential Equations in Fluid Mechanics

Research Project

Project/Area Number 21H04433
Research InstitutionWaseda University

Principal Investigator

小薗 英雄  早稲田大学, 理工学術院, 教授 (00195728)

Co-Investigator(Kenkyū-buntansha) 三浦 英之  東京工業大学, 情報理工学院, 准教授 (20431497)
前川 泰則  京都大学, 理学研究科, 教授 (70507954)
隠居 良行  東京工業大学, 理学院, 教授 (80243913)
Project Period (FY) 2021-04-05 – 2026-03-31
Keywordsヘルムホルツ・ワイル分解 / ベッチ数 / 調和ベクトル場 / ナビエ・ストークス方程式
Outline of Annual Research Achievements

3次元Euclid 空間R3 内の滑らかな閉曲面∂Ω をもつ内部および外部領域Ω 上のLr-ベクトル場u が u = h + rot w + ∇p と一意的に表せることについて考察した.ここでh は調和ベクトル場,すなわちrot h = 0 かつdiv h = 0 を満たす.Ω が境界のないリーマン多様体であり,u がΩ上の滑らかなp-次微分形式のときは,ド・ラーム-ホッジ-小平分解として知られている.境界∂Ω 上での調和ベクトル場hの条件は,h・ν|∂Ω = 0 およびh×ν|∂Ω = 0 の2つである.ここでνは境界上の単位外向き法線ベクトルである.これらの境界条件を満たす調和ベクトル場全体のなす空間をそれぞれXr(Ω),Vr(Ω) で表すとき,Ω が内部領域である場合は,すべての1 < r < ∞に対して境界∂Ω まで込めてC∞-級の有限次元ベクトル空間となる.また,境界∂Ωの種数をN, 連結成分の個数をLとすると,dim Xr(Ω) = N, dim V r(Ω) = L - 1 であり,第2および第1 Betti 数とよばれるΩ の位相不変量であり,1 < r < ∞に依存しない.
応用として定常ナビエ・ストークス方程式の非斉次境界値問題の可解性と,大域的補正コンパクト性定理(compensated compactness)がある.一方,外部領域においては事情は異なり,例えばdim Vr(Ω) はr = 3/3 を閾値として,1 < r ≦3/2 のとき,dim Vr(Ω) = L-1, 3/2 < r < ∞のとき,dim Vr(Ω) = L である.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

非定常線形ストークス方程式の時間に依存する特異点の除去可能性を考察した.n 次元空間の有界領域内のストークス方程式の解が,時間に関して指数0 < α ≦ 1/2 ヘルダー連続の動的孤立特異点をもつとき,その特異点への漸近オーダーが1/α - n より穏やかな挙動をするとき,それは除去可能であることを証明した,特にα = 1/2 であるときは,この漸近オーダーは2-nとなり,定常ストークス方程式の基本解の特異点の挙動と一致する.従って,本定理はよく知られた定常ストークス方程式の孤立特異点の除去可能性定理の非定常問題への自然な一般化と見なせる.

Strategy for Future Research Activity

2022年度においては.3次元空間内の無限円柱の外部領域における定常ナビエストークス方程式の軸対称解の漸近挙動を考察した.解のクラスとしては一般化されたディリクレ積分有限,すなわち一階偏導関数がq-乗可積分であり,また軸対称性に加えて鉛直方向には周期的かつ,円柱座標系による旋回(swirl) 部分はゼロと仮定した.この様な解の条件下で,その渦度の円柱座標の動径方向の無限遠点における各点評価式を可積分指数q の関数として確立した.応用として3 次元全空間における旋回ゼロの一般化されたディリクレ積分有限な解のリュービル型定理を証明した.そこで今後は,まずは鉛直方向への周期性の仮定を除くこと,および旋回のある無限円柱の外部領域での解の漸近挙動を研究対象とする.

  • Research Products

    (7 results)

All 2024 2023

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (3 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results)

  • [Journal Article] 3次元L^r -ベクトル場に対するHelmholtz-Weyl分解2024

    • Author(s)
      小薗英雄 清水扇丈 柳澤卓
    • Journal Title

      数学

      Volume: 75 Pages: 1-30

    • Peer Reviewed
  • [Journal Article] Asymptotic behavior and Liouville-type theorems for axisymmetric stationary Navier-Stokes equations outside of an infinite cylinder with a periodic boundary condition2024

    • Author(s)
      Kozono, H., Terasawa, Y., Wakasugi, Y.
    • Journal Title

      J. Differential Equations

      Volume: 365 Pages: 905--926

    • DOI

      10.1016/j.jde.2023.05.025

    • Peer Reviewed
  • [Journal Article] Removable time-dependent singularities of solutions to the Stokes equations.2023

    • Author(s)
      Kozono, H., Ushikoshi, E., Wakabayashi, F.
    • Journal Title

      J. Differential Equations

      Volume: 342 Pages: 472--489

    • DOI

      10.1016/j.jde.2022.10.005

    • Peer Reviewed
  • [Journal Article] Stability of stationary solutions to the Navier-Stokes equations in the Besov space2023

    • Author(s)
      Kozono, H., Shimizu, S.
    • Journal Title

      Math. Nachr.

      Volume: 296 Pages: 1964--1982

    • DOI

      10.1002/mana.202100150

    • Peer Reviewed
  • [Presentation] L^r-Helmholtz-Weyl decomposition in 3D exterior domains and its application to the Navier-Stokes equations2023

    • Author(s)
      小薗英雄
    • Organizer
      RIMS 研究集会「Analysis, Geometry and Stochastics on Metric Spaces」
    • Int'l Joint Research / Invited
  • [Presentation] Generalized Taylor-Couette flow2023

    • Author(s)
      小薗英雄
    • Organizer
      International Confernce on \\ Recent Advances in Nonlinear PDEs and Their Applications in Celebration of the 60th Aniversary of CUHK
    • Int'l Joint Research / Invited
  • [Presentation] Generalized quasi-geostrophic equation in the critical Lorentz-Besov space based on the maximal regularity theorem2023

    • Author(s)
      小薗英雄
    • Organizer
      East Asian Workshop on PDEs from Kinetics and Continuum Mechanics
    • Int'l Joint Research / Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi