2023 Fiscal Year Final Research Report
Research on Dataset for Attack Evaluation of In-vehicle Systems and Fuzz Data Generation
Project/Area Number |
21K11892
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60070:Information security-related
|
Research Institution | Kyoto Sangyo University |
Principal Investigator |
Inoue Hiroyuki 京都産業大学, 情報理工学部, 教授 (60468296)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 車載ネットワーク / データセット / なりすまし / ファジング / CAN / 車載Ethernet |
Outline of Final Research Achievements |
I have developed an attack dataset for CAN, which is widely used in automotive LANs, that combines spoofing, fuzzing, and denial-of-service (DoS) attacks. Using this dataset, I constructed a machine learning-based anomaly detection system, and developed and evaluated an in-vehicle LAN data utilization system using ID-based cryptography to detect anomalies on the server side. I also conducted a risk analysis of SDV using in-vehicle Ethernet and zone architecture, and analyzed spoofing attacks on SOME/IP, a service-oriented communication middleware, and evaluated methods for detecting such attacks.
|
Free Research Field |
組込みセキュリティ
|
Academic Significance and Societal Importance of the Research Achievements |
コネクティッドカーの普及につれて,自動車の内部ネットワークである車載LANのセキュリティを強化する手法が求められている.広く普及しているCANを使った攻撃データセットの開発とそれを用いた攻撃検知手法により,より安全な自動車システムの開発に寄与することができる.また,CANの後継と見込まれている車載Ethernetとそれを用いたSDVについても,同様に攻撃手法の分析とその緩和策を具体的に検討することで,より安全なシステムの開発が期待できる.
|