2014 Fiscal Year Final Research Report
Algebraic analysis of infinite symmetry
Project/Area Number |
22340005
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
ARIKI Susumu 大阪大学, 大学院情報科学研究科, 教授 (40212641)
TANISAKI Toshiyuki 大阪市立大学, 理学研究科, 教授 (70142916)
NAKASHIMA Toshiki 上智大学, 理工学部, 教授 (60243193)
KATO Syu 京都大学, 理学部, 准教授 (40456760)
MIWA Tetsuji 京都大学, 国際高等教育院, 特定教授 (10027386)
|
Research Collaborator |
SCHAPIRA Pierre
KANG Seok-Jin
VILONEN Kari
D'AGNOLO Andrea
|
Project Period (FY) |
2010-04-01 – 2015-03-31
|
Keywords | 表現論 / リーマン・ヒルベルト対応 / 圏化 |
Outline of Final Research Achievements |
There are three significant results of the research on representation theory during these five years. First, I proved the Riemann-Hilbert correspondence for holonomic D-modules (with A. D'Agnolo). Second, I proved ``codimension-three conjecture''(with K. Vilonen). Third, I established a categorification of quantum groups via cyclotomic quiver Hecke algebras (with S-J. Kang).
|
Free Research Field |
数学
|