2022 Fiscal Year Research-status Report
代数体、整数環、単数群の明示的な構成、及び関連する数論的諸問題
Project/Area Number |
22K03253
|
Research Institution | Tokyo University of Science |
Principal Investigator |
加塩 朋和 東京理科大学, 理工学部数学科, 准教授 (10403106)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Keywords | 多重ガンマ関数 / p進多重ガンマ関数 / 絶対フロベニウス作用 / CM周期 / p進周期 / スターク予想 / 虚数乗法論 / 代数曲線 |
Outline of Annual Research Achievements |
本研究は代数体やその整数環、単数群などの生成元を明示的に構成し、それらを整数論における諸問題へ応用することを目的としている。特に当該年度は、吉田予想、スターク予想、グロス-スターク予想に繋がるであろう研究に関連する進展があった。 CM周期に関する吉田予想は、多重ガンマ関数の積で定義される絶対CM周期記号の性質、特に、CM周期との間の関係を述べている。本研究ではこれらのp進類似物を考え、「CM周期とp進周期の比」及び「絶対CM周期記号とp進絶対CM周期記号の比」という概念を導入することでp進周期環値ガンマ関数を定義し、その研究を行っている。これらの定義や基本的な性質、及び、吉田予想、スターク予想、グロス-スターク予想との関係などはプレプリントとして発表している。 とくに基礎体が有理数体の場合には私自身の先行研究があり、p進周期環値ガンマ関数の応用を発見していた。具体的には「円単数の相互法則」を定式化し、示すことができていた。基礎体が有理数体の場合のスターク予想やグロス-スターク予想の精密化も与えていた。 今回さらに、フェルマー曲線上のフロベニウス行列に関するコールマンの公式に対する別証明を与えることができた。これは、フロベニウス作用のp進連続性という仮定の下で、コールマンの公式が、p進周期環値ガンマ関数の関数等式による特徴付けから導ける、という内容である。この研究は論文雑誌に掲載予定である。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
当該年度は新型コロナウィルス流行の影響により、出張の機会の減少し、また、副次的に起きる問題への対応のため研究時間を削られるという負の側面があった。 一方で、遠隔会議の浸透により、離れた場所にいる研究者とも研究討論を行えるようになる、という良い側面もあった。これらを上手く利用し、関連する研究分野の専門家などとも意見交換をし、人脈を広げながら、上記のような結果を得ることができた。概ね順調と言える。
|
Strategy for Future Research Activity |
当該年度の研究はおおむね順調であり、新しい共同研究者や、研究テーマとその突破口を得ることが出来ている。これらを中心にさらに研究を進めたい。
|
Causes of Carryover |
新型コロナウィルスの流行により、昨年前半は出張等を抑制していたため、助成金の一部が繰り越しとなった。新年度は「5類移行」なども計画されており、概ね例年通りの研究環境になると予測しており、国内出張等も頻繁に行う予定で、繰り越し分の多くは旅費として使用予定である。
|
Research Products
(3 results)