2022 Fiscal Year Research-status Report
Generation and extraction of device fingerprints (quantum fingerprints) based on physics of spin qubits
Project/Area Number |
22K03497
|
Research Institution | Teikyo University |
Principal Investigator |
棚本 哲史 帝京大学, 理工学部, 教授 (80393875)
|
Co-Investigator(Kenkyū-buntansha) |
大野 圭司 国立研究開発法人理化学研究所, 開拓研究本部, 専任研究員 (00302802)
平本 俊郎 東京大学, 生産技術研究所, 教授 (20192718)
|
Project Period (FY) |
2022-04-01 – 2026-03-31
|
Keywords | 量子指紋 / スピン量子ビット / PUF / 量子セキュリティ / シリコンナノワイヤー |
Outline of Annual Research Achievements |
(1)研究分担者のグループで統計を取る素子の測定を行った。まず通常の平面型トランジスタを300個以上測定した。I-Vのチップ内分布を解析してみたところ、I-VにPUF的要素が少ないことが分かった。これは元々性能が高いトランジスタを選んでしまったため、トラップなどに起因した、I-Vのばらつきが少ないこと、そして初回ということで室温で調べたことが原因であった。次に、よりばらつきが大きいと考えられる、幅3nmオーダーのシリコンナノワイヤー素子を多数(300個程度)測定を繰り返した。結果を現在、OpenCVにより解析している。OpenCVはI-Vデータを画像として、類似度を見るために使われる。単純なI-V比較では、違いを区別しにくいため、I-V自体をデータ加工して、特徴の抽出に取り組んでいる。 (2)研究協力者よりトンネルFETのチップばらつきのデータの解析を開始している。トンネルFETはシリコンナノワイヤーよりもシンプルなI-V特性を示しているため、まずは機械学習を取り入れて、サンプル間の違いを系統的に理解できるかを検討している。 (3)PUFの原因として、シリコンデバイス中のトラップ分布がある。理論的にはトラップを介した電気伝導の簡単なモデルを立てた。そしてさらに進めて、トラップそのもののコンピューティングができないかにも取り組んでいる。この一つとして、リザバーコンピューティングへの応用を考察してる。これまでに、数々のリザバーコンピューティングの性能指標を計算できるプログラムを作成した。例えば、Parity Check タスク, Short time memory タスク, timer タスクなどを計算できるようになった。そして、エコステートネットワークモデルでプログラムの計算精度を確認中である。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
PUF評価の第一デバイスデータの測定である。このPUF研究の基本となる同じデバイスの繰り返しをシリコンナノワイヤーにて行った。これにより統計的解析の基礎ができた。また、トンネルFET素子についてもチップ内ばらつきを検討できるデータを取得し、解析をはじめた。そして、通常のI-V特性からどのように特徴を抽出するかの検討を開始している。データの解析としては、データサイエンスなどの手法と検討中である。現在、解析の手法はいろいろとあり、どの手法が最適か、ひとつずつ試しながら検討している。 理論の面ではトラップの記述として、単一電子を利用したモデルを構築した。トラップによるノイズ測定の実験と比較しており、ノイズの原因をある程度特定できることがわかりつつある。また回路シミュレータにも展開可能なモデルも検討中である。
|
Strategy for Future Research Activity |
2023年中には、シリコンナノワイヤーとトンネルFETのこれまでに取得したデータの解析を終了したいと考えている。そして、来春までには、学会発表と論文投稿を計画している。解析の方法としては、OpenCVのほか、通常の機械学習を用いた類似性の検討も結果を出していきたいと考えている。またトラップのばらつきを利用したリザバーコンピューティングの可能性について、理論的なアプローチの第一回目の結果を出していきたいと考えている。2024年度以降については、より的を絞ったデータの取得とPUFとしての特徴抽出をより厳格に行っていきたいと考えている。
|
Causes of Carryover |
当初購入計画していたTCADライセンスについて、TCADはデバイス構造の詳細が必要であるが、2022年度は、その最終構造までは決定していないため、ライセンスの購入は見送った。そのため次年度使用額が生じた。2022年度に再度検討したところ、より低価格なソフトウェアであるCOMSOL製品で簡便な構造計算ができることが判明した。そこで、2023年度はCOMSOLのソフトウェアの購入を考えている。現在、必要なモジュールの選定は終わっている段階である。このソフトウェアでは、当初購入を計画していたTCADと比べると、量子構造を計算できる機能も備わっているので、利用していきたいと考えている。
|