• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

Development of Hybrid Flood Forecasting System based on Rainfall Information from Machine Learning Algorithm

Research Project

Project/Area Number 22K04332
Research InstitutionKyoto University

Principal Investigator

Kim Sunmin  京都大学, 工学研究科, 准教授 (10546013)

Project Period (FY) 2022-04-01 – 2025-03-31
Keywords機械学習・深層学習 / 降雨予測・水位予測
Outline of Annual Research Achievements

1)機械学習を活用した降雨予測モデルの開発
Convolutional Encoder-DecoderアルゴリズムとConvolutional-LSTMアルゴリズムを利用し、XバンドMPレーダー観測情報を入力とした短期降雨予測モデルの開発を行った。Convolutional Encoder-Decoderアルゴリズムを用いたモデルに対して安定的な学習ができてモデル化に成功したが、精度の高い学習を行うためには多くの観測データ(降雨事例)を用いた学習テストが必要であり、モデル化の効率性を考慮して既存の物理基盤モデルとの運用を模索している。
2)機械学習を活用した水位・流量予測モデルの検証
ANN基盤の水位予測モデルに対して様々な組み合わせの入力情報をテストし、モデルの予測精度を最適化することができる入力情報と学習条件を調査した。また、淀川流域の任意の水位地点に対して自動的に関連データを取得して機械学習を行うことが可能なアルゴリズムを開発中である。開発中のアルゴリズムは初心者のユーザーでもウェブ上で基本的な水位・流量予測のための機械学習モデルを簡単に作成できることを目指している。
3)気象変数との相関を考慮した中長期降雨予測モデルの開発
効率的なダム操作など洪水対策の一環として数日から数週間の降雨予測が可能な、気象変数を入力として機械学習モデルを作成した。作成したモデルに対して必要な気象変数を厳密に調査するために、再解析モデルからの気象変数情報を使用して入力データに対するFeature Selection Testを実施した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

機械学習アルゴリズムを用いて降雨予測モデルおよび水位・流量予測モデルを開発し、モデルの予測精度を向上させるために入力変数や学習条件などを検証した。また、効率的なダム操作など洪水対策の一環として数日から数週間の降雨予測が可能な機械学習モデルの作成も進めている。

Strategy for Future Research Activity

1)機械学習を活用した降雨予測モデルの改良
XバンドMPレーダーからの3次元観測情報を入力情報として、CNNおよびConvolutional-LSTMの機械学習アルゴリズムを活用し、6時間先まで降雨の時空間情報を推定できる短期降雨予測モデルの開発を続く。AMEDAS地上観測情報およびひまわり衛星観測情報を入力情報として活用し、降雨予測モデルの精度向上を目指す。検証では、最近10年間観測された多数の降雨事例に対して開発モデルをテストし、実用化まで視野に入れる。
2)物理モデルと人工知能モデルを融合した予測システムの構築
最近10年間観測された多数の洪水事例に対して検証を行い、機械学習基盤の洪水予測モデルと物理基盤の洪水予測モデルの精度および効率に対して比較検討を行う。両モデルの特徴を考慮して各モデルの精度をさらに向上する方法を模索する。物理モデルと人工知能モデルのそれぞれの特徴と長所を生かしたハイブリッドシステムを構築する。例えば、3時間先までの降雨予測は物理基盤モデルを重視し、6時間先までの予測は人工知能モデルの予測を活用する。または、洪水警報基 準点の水位予測は人工知能モデルで行い、上流のダム流入量の予測は物理基盤の分布型流出モデルを活用する。

Causes of Carryover

計算機を購入する予定だったが、多数のプログラムを試すことによりGoogleーColabクラウド計算サービスを利用して研究を行なった。GoogleーColabクラウド計算サービスを続いて利用する予定である。次年度予算は学会発表および論文投稿料として活用する予定である。

  • Research Products

    (2 results)

All 2023

All Presentation (2 results)

  • [Presentation] Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data2023

    • Author(s)
      Sunmin Kim, Masaharu Shibata, and Yasuto Tachikawa
    • Organizer
      KWRA Annual Conference, Korea
  • [Presentation] Selection of Input Variables in ANN for Precise Hydrological Modeling and Prediction2023

    • Author(s)
      Sunmin Kim and Yasuto Tachikawa
    • Organizer
      CHES Annual Conference, China

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi