• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

分割統治法の高度化による中間形行列に対する高性能固有値ソルバの実現

Research Project

Project/Area Number 22K12047
Research InstitutionUniversity of Fukui

Principal Investigator

廣田 悠輔  福井大学, 学術研究院工学系部門, 助教 (60709765)

Project Period (FY) 2022-04-01 – 2025-03-31
Keywords高性能計算 / 固有値問題 / 分割統治法 / 帯行列
Outline of Annual Research Achievements

本研究課題では,分割統治法と呼ばれる行列の固有値計算手法の高度化に関する研究を行っている.分割統治法は実対称三重対角行列や半帯幅の小さい実対称帯行列などの行列の標準固有値および標準固有ベクトルを求める強力な固有値解法の一つである.最も古典的な三重対角行列向け分割統治法はデファクトスタンダード行列計算ライブラリLAPACK の固有値ソルバとして実装され,様々な科学技術計算ソフトウェアで広く使用されている.
分割統治法はその重要性にもかかわらず,そのアルゴリズム中のデフレーションと呼ばれる処理の振る舞い,帯行列向け分割統治法における項の処理順序,分割ツリー生成における分割点の自由度の活用法など,十分明らかにされていない点が多数存在する.このため,これらの点を中心に分割統治法の性質を明らかにする必要がある.また,分割統治法の原理上,適用可能な行列は実対称三重対角行列や半帯幅の小さい実対称帯行列に限定されず,より広いクラスの行列に適用できる可能性がある.したがって,分割統治法の適用可能な新たな行列クラスの開発や,分割統治法の適用可能な行列クラスへの変形手法の研究により,分割統治法の応用範囲を拡大することも重要である.
2022年度は,実対称帯行列を(分割統治法が適用可能な)半帯幅の小さい実対称帯行列に変換するアルゴリズムに関する研究を実施した.本研究では既存の変換アルゴリズムの計算量を決定するパラメータの厳密最適化が低いコストで実行可能であることを陽に示した.またそのようなパラメータの厳密最適化を行ったときの変換アルゴリズムの計算量および実行時間を最新の計算機で評価し,その有効性を明らかにした.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

当初計画では初年度は基本となる分割統治法アルゴリズムの,デフレーションと呼ばれる処理の振る舞い,帯行列向け分割統治法における項の処理順序,分割ツリー生成における分割点の自由度の活用法などに関して解明することを予定していた.しかしながら,2022年度は,有力な行列クラスである実対称帯行列への変換アルゴリズムの高速化に関して理論的進展が得られたため,研究期間の後半に実施予定の小課題を先に実施した.結果として実施する小課題の順番に変更はあるもの,研究課題全体として進捗はおおむね順調に進展している.

Strategy for Future Research Activity

2022年度に研究課題内で実施する小課題の順番を当初計画から変更して実施したため,2023年度は当初計画で初年度に実施する予定であった小課題(基本となる分割統治法アルゴリズムの未解明点の解明)を中心に研究を実施する.より具体的には,(1) デフレーションと呼ばれる処理の振る舞い,(2) 帯行列向け分割統治法における項の処理順序,(3) 分割ツリー生成における分割点の自由度の活用法を中心に解明を進める.いずれの項目についても既に基本的な検討を進めており,試作プログラムによる評価が作業の中心となる予定である.
前述の小課題の進捗が早い場合には,分割統治法の適用可能な新たな行列クラスの開発に関する小課題を前倒しして進める.

Causes of Carryover

2022年度は,研究の出張予定に一部変更が生じたほか,計算機購入費の一部を大型計算機使用料に振り替えたことなどにより次年度使用額が生じた.
次年度使用額は,2023年度に予定される成果公開による論文投稿料,試作ソフトウェア開発加速のための追加の計算機資源利用などのために使用される予定である.

  • Research Products

    (2 results)

All 2023 2022

All Presentation (2 results)

  • [Presentation] 実対称帯行列固有値問題における三重対角化および固有ベクトル逆変換の計算量最小化2023

    • Author(s)
      上ノ山功基,廣田悠輔
    • Organizer
      日本応用数理学会 2023年研究部会連合発表会
  • [Presentation] 実対称行列の固有値問題の求解における計算量削減技術2022

    • Author(s)
      廣田悠輔
    • Organizer
      自動チューニング研究会 第29回AT研究会オープンアカデミックセッション

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi