2023 Fiscal Year Final Research Report
Development of microscopy techniques to simultaneously visualize the dynamics of the structure and local physical properties of a single protein
Project/Area Number |
22K18943
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 28:Nano/micro science and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Keywords | 高速原子間力顕微鏡 / 一分子計測 / 機械特性 / 表面電荷分布 / ダイナミクス |
Outline of Final Research Achievements |
A near-infrared laser was introduced into a high-speed atomic force microscope (AFM) to enable stable excitation of the cantilever at frequencies lower than the resonance frequency through photothermal excitation. It was confirmed that the displacement of the cantilever can be measured when the probe contacts the sample by exciting the cantilever at off-resonance frequencies. Currently, software is being implemented to measure only the cantilever displacement just before and after the probe contacts the sample, reducing the amount of data. In the near future, it is expected that force curves can be acquired at all pixels simultaneously with AFM imaging, enabling single-molecule scale mapping of mechanical properties and surface charge distributions.
|
Free Research Field |
生物物理学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、高速AFMにおいてカンチレバーの光熱励振を用いたオフレゾナンス励振法を実装し、AFMイメージングと同時に各ピクセルでのフォースカーブ計測の基盤を確立した。本手法により、生体分子の構造と物性の相関を直接観察できるようになり、分子の機能メカニズムの理解が深まると期待される。また、本技術は創薬、バイオセンサー、ナノデバイスなど幅広い分野での応用が期待され、新たな創薬ターゲットの発見や材料開発の効率化にもつながる可能性がある。本研究は、基礎科学の発展だけでなく、産業応用や社会全体に対しても大きなインパクトを与える可能性を秘めている。
|