• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Annual Research Report

特異点理論の情報幾何学への応用探究~《特異モデルの情報幾何学》の創設

Research Project

Project/Area Number 22KJ0052
Allocation TypeMulti-year Fund
Research InstitutionWaseda University

Principal Investigator

中島 直道  早稲田大学, 理工学術院, 特別研究員(PD)

Project Period (FY) 2023-03-08 – 2024-03-31
Keywords情報幾何学 / 特異点理論 / ルジャンドル双対性 / マルコフ連鎖 / ブレグマンダイバージェンス / 最尤推定
Outline of Annual Research Achievements

本年度は以下の課題について取り組んだ.
(1)マルコフ連鎖に付随する遷移確率族の空間における正測度空間の理論の構築:正測度空間の理論とは,離散分布族に備わる双対平坦構造について統計学的に正当なものを探る理論であって,その主たる方法は離散分布族の正規化条件を取って得られる拡大空間上のF-ダイバージェンスとブレグマンダイバージェンスの存在性を調べることである.遷移確率族に対しても,適切な拡大空間を導入しその上のF-ダイバージェンスのクラスを定義した.更に長岡浩司氏(電気通信大学名誉教授)によって与えられた遷移確率族の双対平坦構造と整合性を持つブレグマンダイバージェンスを陽的に与えた.竹内純一氏(九州大学)は拡大マルコフモデルを導入して遷移確率族の拡大空間の理解を試みたが,我々の枠組みはその正確な対象を与えるものである.以上の結果を論文にまとめて投稿を行なっている.
(2)平面曲線の双対平坦幾何と特異点理論:ユークリッド空間における平面曲線の外在的な微分幾何的不変量が,対応する縮閉線(あるいはコースティック)の特異点によって特徴づけられることは古くから知られており,本課題はその双対平坦幾何版を探るものである.双対平坦幾何はリーマン構造とルジャンドル双対性を併せ持つ幾何学であり,これらの観点から縮閉線を定義し,その特異点と曲線の双対平坦幾何的不変量との関係を導出した.さらに関数の特異点論に立脚し縮閉線の分類を行った.これらの結果は統計学等への幅広い応用を持つ.実際,我々の枠組みは指数型分布族における曲指数型分布族への測地線による射影の不定性を記述し,最尤推定やem-アルゴリズム等の多重解問題へ統一的なアプローチを与える.さらに我々の不変量とEfronによって導入された統計的曲率の関係性を調べることでEfronによる議論の精密化を可能にする.以上の結果をまとめた論文を執筆中である.

  • Research Products

    (11 results)

All 2024 2023

All Journal Article (2 results) (of which Open Access: 2 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 6 results)

  • [Journal Article] Information geometry of positive measures2024

    • Author(s)
      Naomichi Nakajima
    • Journal Title

      MI Lecture Note, Institute of Mathematics for Industry, Kyushu University

      Volume: 95 Pages: -

    • Open Access
  • [Journal Article] The space of positive transition measures on a Markov chain2023

    • Author(s)
      Naomichi Nakajima
    • Journal Title

      arXiv

      Volume: - Pages: -

    • Open Access
  • [Presentation] 双対平坦構造の特異点論的一般化2024

    • Author(s)
      中島直道
    • Organizer
      東京大学生産技術研究所 定量生物学研究室 Q-BIO SEMINAR
    • Invited
  • [Presentation] 正測度空間の情報幾何学2024

    • Author(s)
      中島直道
    • Organizer
      立命館大学幾何学セミナー
    • Invited
  • [Presentation] Legendre singularities and Information Geometry2023

    • Author(s)
      Naomichi Nakajima
    • Organizer
      WORKSHOP on Algebraic and Analytic Singularities
    • Int'l Joint Research
  • [Presentation] Information geometry of positive measures2023

    • Author(s)
      Naomichi Nakajima
    • Organizer
      WORKSHOP on Mathematics for Industry
    • Int'l Joint Research
  • [Presentation] 正測度空間の情報幾何学~マルコフ過程に対する正測度理論の構築2023

    • Author(s)
      中島直道
    • Organizer
      第26回情報論的学習理論ワークショップ (IBIS2023)
  • [Presentation] 特異点論から見る情報幾何学2023

    • Author(s)
      中島直道
    • Organizer
      広島大学トポロジー・幾何セミナー
    • Invited
  • [Presentation] 非凸ポテンシャルのルジャンドル変換と情報幾何学2023

    • Author(s)
      中島直道
    • Organizer
      横国大幾何トポロジーセミナー
    • Invited
  • [Presentation] 非凸ポテンシャルのルジャンドル変換と情報幾何学2023

    • Author(s)
      中島直道
    • Organizer
      早稲田大学本間研究室セミナー
    • Invited
  • [Presentation] 非凸ポテンシャルのルジャンドル変換と情報幾何学2023

    • Author(s)
      中島直道
    • Organizer
      埼玉大学幾何セミナー
    • Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi