• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

New developments of singularity theory of mappings

Research Project

  • PDF
Project/Area Number 23244008
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyushu University

Principal Investigator

SAEKI OSAMU  九州大学, マス・フォア・インダストリ研究所, 教授 (30201510)

Co-Investigator(Kenkyū-buntansha) OHMOTO Toru  北海道大学, 大学院理学研究院, 教授 (20264400)
YOKURA Shoji  鹿児島大学, 学術研究院理工学域理学系, 教授 (60182680)
IWASE Norio  九州大学, 大学院数理学研究院, 教授 (60213287)
KAMADA Seiichi  大阪市立大学, 理学研究科, 教授 (60254380)
SAKUMA Kazuhiro  近畿大学, 理工学部, 教授 (80270362)
Co-Investigator(Renkei-kenkyūsha) ISHIKAWA Masaharu  東北大学, 大学院理学研究科, 准教授 (10361784)
FUKUI Toshizumi  埼玉大学, 理工学研究科, 教授 (90218892)
ISHIKAWA Goo  北海道大学, 大学院理学研究院, 教授 (50176161)
YAMAMOTO Minoru  弘前大学, 教育学部, 准教授 (40435475)
TAKASE Masamichi  成蹊大学, 理工学部, 准教授 (30447718)
ASHIKAGA Tadashi  東北学院大学, 工学部, 教授 (90125203)
KATANAGA Atsuko  信州大学, 学術研究院, 准教授 (20373128)
KOBAYASHI Mahito  秋田大学, 大学院理工学研究科, 准教授 (10261645)
YAMAMOTO Takahiro  九州産業大学, 工学部, 准教授 (60435972)
TAKEUCHI Kiyoshi  筑波大学, 数理物質系, 教授 (70281160)
TAKATA Toshie  九州大学, 大学院数理学研究院, 准教授 (40253398)
Project Period (FY) 2011-04-01 – 2016-03-31
Keywords特異点 / 多項式写像芽 / 特異点消去 / 埋め込み / はめ込み / 特異ファイバー / 同境群 / データ可視化
Outline of Final Research Achievements

The main purpose of this project was to indicate new directions of the singularity theory of differentiable mappings in our era of modern Mathematics. First, we completely solved affirmatively the long-standing classical problem of Milnor about the existence of nontrivial polynomial map germs of dimension 6 to 3, by utilizing the topology of configuration spaces. We also completely determined the conditions for a special generic map to be desingularized from a viewpoint of immersions and embeddings. We classified singular fibers of stable maps on 3-manifolds with boundary, established the notion of cobordism group of Morse functions on surfaces with boundary, and showed that it is a cyclic group of order two. Finally, we applied such a theory of singular fibers to the data visualization and developed a new user interface. Summarizing, we could broadly show the new directions for the development of the singularity theory of differentiable mappings.

Free Research Field

位相幾何学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi