2015 Fiscal Year Final Research Report
Development of Next-Generation Semi-structured Data Mining for Large-Scale Knowledge Base Formation
Project/Area Number |
24240021
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Intelligent informatics
|
Research Institution | Hokkaido University |
Principal Investigator |
Arimura Hiroki 北海道大学, 情報科学研究科, 教授 (20222763)
|
Co-Investigator(Kenkyū-buntansha) |
UNO TAKEAKI 国立情報学研究所, 情報学プリンシプル研究系, 教授 (00302977)
MINATO S. 北海道大学, 大学院情報科学研究科, 教授 (10374612)
HIRATA KOUICHI 九州工業大学, 情報工学研究院, 教授 (20274558)
ITO K. 北海道大学, 人獣共通感染症リサーチセンター, 教授 (60396314)
SHIMOZONO S. 九州工業大学, 情報工学研究院, 准教授 (70243988)
KIDA T. 北海道大学, 大学院情報科学研究科, 准教授 (70343316)
|
Project Period (FY) |
2012-04-01 – 2016-03-31
|
Keywords | 大規模半構造データ / データマイニング / 高次元データ検索 / イベントストリーム処理 / 知識索引 / 知識発見 / ビッグデータ |
Outline of Final Research Achievements |
The final goal of this research is to establish a strategy for forming large-scale knowledge bases from massive data and information on a wide range of human activities on social, scientific, and industrial aspects in the cyber space. For this purpose, we study next-generation data mining technologies for efficiently extracting useful knowledge as patterns and rules from semi-structured data, that is, huge and heterogeneous collections of weakly structured data in the cyber space. (1) Efficient semi-structured data mining engines based on optimal pattern discovery framework. (2) Semi-strcuture mining based on spatio-temporal information. (3) Combining semi-structured data mining with stochastic information processing schema. (4) Knowledge federation technologies for large-scale knowledge bases creation. (5) Knowledge indexing technologies for large-scale knowledge bases creation. (6) Development of knowledge base creation systems based on semi-structured data mining.
|
Free Research Field |
知能情報学
|