• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Free boundary problems for flows with phase transitions consistent with thermodynamics based on maximal regularity theorem

Research Project

  • PDF
Project/Area Number 24340025
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKyoto University (2016)
Shizuoka University (2012-2015)

Principal Investigator

Shimizu Senjo  京都大学, 人間・環境学研究科(研究院), 教授 (50273165)

Co-Investigator(Kenkyū-buntansha) 田中 直樹  静岡大学, 理学部, 教授 (00207119)
菊地 光嗣  静岡大学, 工学部, 教授 (50195202)
小林 孝行  大阪大学, 基礎工学研究科, 教授 (50272133)
久保 隆徹  筑波大学, 数理物質科学研究科(系), 講師 (90424811)
Co-Investigator(Renkei-kenkyūsha) OGAWA Takayoshi  東北大学, 大学院理学研究科, 教授 (20224107)
KUMURA Hironori  静岡大学, 理学部, 准教授 (30283336)
Project Period (FY) 2012-04-01 – 2017-03-31
Keywords数学解析 / Navier-Stokes方程式 / 自由境界問題 / 最大正則性 / 相転移 / 適切性 / 安定性
Outline of Final Research Achievements

We study the basic model for incompressible two-phase flows with phase transitions consistent with thermodynamics in the case of constant but non-equal densities of the phases. We employ the direct mapping approach to transform the problem locally in time to a fixed domain. The proof of local well-posedness is based on maximal regularity of the underlying principal linearization and the contraction mapping principle. We extend our well-posedness result to general geometries, study the stability of the equilibria of the problem, and show that a solution which does not develop singularities exist globally, and if its limit set conatins a stable equilibrium it converge to this equilibrium as time goes to infinity.

Free Research Field

偏微分方程式論

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi