• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Annual Research Report

変動する指標をもつ関数空間を基礎とした調和解析とその応用

Research Project

Project/Area Number 24540159
Research InstitutionIbaraki University

Principal Investigator

中井 英一  茨城大学, 理学部, 教授 (60259900)

Co-Investigator(Kenkyū-buntansha) 堀内 利郎  茨城大学, 理学部, 教授 (80157057)
曾布川 拓也  早稲田大学, グローバルエデュケーションセンター, 教授 (60252946)
貞末 岳  大阪教育大学, 教育学部, 准教授 (40324884)
澤野 嘉宏  首都大学東京, 理工学研究科, 准教授 (40532635)
Project Period (FY) 2012-04-01 – 2015-03-31
Keywords調和解析 / 変動指数 / 関数空間 / 分数べき積分 / Hardy空間 / Orlicz空間 / Campanato空間 / Morrey空間
Outline of Annual Research Achievements

この研究は、これまで長年にわたって研究が積み重ねられてきた調和解析の理論を、変動指数を伴う関数空間や振動・増大度が変動する関数空間など、新しい関数空間に適用し、応用範囲の広い理論を確立することを目的とする。最終年度は、具体的に以下のように研究を進めることができた。
1.変動指数をもつ重み付きルベーグ空間のウェーブレットによる特徴づけを行った。さらにウェーブレットを用いて一般のバナッハ関数空間に関する考察を行った。
2.補間理論を用いてBシグマ・モリー・カンパナト空間とローカルモリータイプ空間の理論の再構築を行った。これにより、Bシグマ・モリー・カンパナト空間とローカルモリータイプ空間を特別な場合として含む広範な関数空間を定義することができ、さらにBシグマ・モリー・カンパナト空間上で得られていた作用素の有界性が、この広範な関数空間上でも、成り立つことが証明できた。
3.マルチンゲールBLO空間に関して考察し、マルチンゲールマキシマル作用素のBMO-BLO有界性とその評価、マルチンゲールBLOのベネット型分解に関する結果を得た。
この3年間の研究で、変動指数を持つハーディー空間、オーリッツ・ハーディー空間、および、これらと関連する関数空間、さらにその双対空間等の理論を完成させた。また、振動・増大度が変動する関数空間としての一般化モリー・カンパナト空間、Bシグマ・モリー・カンパナト空間の理論を開拓した。これらを用いて具体的に偏微分方程式の解の解析を行った。マルチンゲール理論に関しても調和解析的考察を行い、マルチンゲール・モリー・カンパナト空間、マルチンゲール・ハーディー・モリー・カンパナト空間等の理論を構成した。また、先行研究やこの3年間の研究で得た成果をまとめて、変動する指標をもつ関数空間に関する入門者向けテキストを完成させた。

  • Research Products

    (12 results)

All 2015 2014 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Acknowledgement Compliant: 6 results,  Open Access: 3 results) Presentation (5 results) Remarks (1 results)

  • [Journal Article] Pointwise multipliers on martingale Campanato spaces2014

    • Author(s)
      Eiichi Nakai and Gaku Sadasue
    • Journal Title

      Studia Mathematica

      Volume: 220 Pages: 87--100

    • DOI

      DOI:10.4064/sm220-1-5

    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Characterizations for the generalized fractional integral operators on Morrey spaces2014

    • Author(s)
      Eridani, Hendra Gunawan, Eiichi Nakai and Yoshihiro Sawano
    • Journal Title

      Mathematical Inequalities & Applications

      Volume: 17 Pages: 761--777

    • DOI

      DOI:10.7153/mia-17-56

    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Orlicz-Hardy spaces and their duals2014

    • Author(s)
      Eiichi Nakai and Yoshihiro Sawano
    • Journal Title

      Science China Mathematics

      Volume: 57 Pages: 903--962

    • DOI

      DOI:10.1007/s11425-014-4798-y

    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Weighted Hardy inequalities with infinitely many sharp missing terms2014

    • Author(s)
      Hiroshi Ando, Toshio Horiuchi and Eiichi Nakai
    • Journal Title

      Mathematical Journal of Ibaraki University

      Volume: 46 Pages: 9--30

    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Some properties of slowly increasing functions2014

    • Author(s)
      Hiroshi Ando, Toshio Horiuchi and Eiichi Nakai
    • Journal Title

      Mathematical Journal of Ibaraki University

      Volume: 46 Pages: 37--49

    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Function spaces with variable exponents -- an introduction --2014

    • Author(s)
      Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano
    • Journal Title

      Scientiae Mathematicae Japonicae

      Volume: 77 Pages: 187--315

    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] 局所 Morrey-Camapanto 空間の一般化と補間理論2015

    • Author(s)
      中井英一, 曽布川拓也
    • Organizer
      日本数学会年会
    • Place of Presentation
      明治大学駿河台キャンパス(リバティタワー)
    • Year and Date
      2015-03-21 – 2015-03-24
  • [Presentation] Function spaces with variable exponent2015

    • Author(s)
      中井英一
    • Organizer
      研究集会「関数解析学の研究とその応用」
    • Place of Presentation
      新潟大学駅南キャンパス「ときめいと」
    • Year and Date
      2015-01-29 – 2015-01-30
  • [Presentation] $B_w^u(E)$-関数空間の補間定理とその応用2014

    • Author(s)
      中井英一, 曽布川拓也
    • Organizer
      実解析学シンポジウム2014
    • Place of Presentation
      富山大学理学部
    • Year and Date
      2014-10-31 – 2014-11-02
  • [Presentation] Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent2014

    • Author(s)
      出来光夫, 中井英一, 澤野嘉宏
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      広島大学東広島キャンパス
    • Year and Date
      2014-09-25 – 2014-09-28
  • [Presentation] $B_w^u$ 空間の補間定理2014

    • Author(s)
      中井英一, 曽布川拓也
    • Organizer
      関数環研究集会
    • Place of Presentation
      早稲田大学教育学部
    • Year and Date
      2014-09-18 – 2014-09-19
  • [Remarks] 研究業績一覧(中井英一)

    • URL

      http://enakai.sci.ibaraki.ac.jp/publication-j.html

URL: 

Published: 2016-06-01  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi