• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Approximate Computing to Cope with Imperfect Information from Growing Data Size

Research Project

  • PDF
Project/Area Number 25240002
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Theory of informatics
Research InstitutionKyoto University

Principal Investigator

IWAMA KAZUO  京都大学, 情報学研究科, 教授 (50131272)

Co-Investigator(Kenkyū-buntansha) AVIS David  京都大学, 情報学研究科, 教授 (90584110)
MIYAZAKI Shuichi  京都大学, 学術情報メディアセンター, 准教授 (00303884)
TAMAKI Suguru  京都大学, 情報学研究科, 助教 (40432413)
Co-Investigator(Renkei-kenkyūsha) ITO Hiro  電気通信大学, 情報理工学研究科, 教授 (50283487)
HORIYAMA Takashi  埼玉大学, 理工学研究科, 准教授 (60314530)
YOSHIDA Yuichi  国立情報学研究所, 情報学プリンシプル研究系, 准教授 (50636967)
OKAMOTO Kazuya  京都大学, 医学部附属病院, 講師 (60565018)
SETO Kazuhisa  成蹊大学, 理工学部情報科学科, 講師 (20584056)
KAWAHARA JUN  奈良先端科学技術大学院大学, 情報科学研究科, 助教 (20572473)
Project Period (FY) 2013-04-01 – 2016-03-31
Keywordsアルゴリズム / 計算困難問題 / 情報の補填 / 数理モデル化 / 理論的性能保証
Outline of Final Research Achievements

One of the main challenge in modern algorithm design is to cope with insufficient information.
In this study, we try to construct a general framework for design of approximation algorithms that can cope with insufficient information due to rapidly growing data size.
As a result, we give design and analysis of such algorithms for various problems in several fields such as graph problems, algorithmic game theory and randomized computation theory.

Free Research Field

計算機科学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi