• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Arithmetic and the Abel Jacobi map on elliptic surfaces and their applications

Research Project

  • PDF
Project/Area Number 25610007
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

TOKUNAGA HIROO  首都大学東京, 理工学研究科, 教授 (30211395)

Research Collaborator BANNAI SHINZO  茨城工業高等専門学校, 講師 (20732556)
SHIRANE TAKETO  宇部工業高等専門学校, 准教授 (70615161)
Guerville-Balle Benoit  東京学芸大学
Tumenbayar Kuhlan  National University of Mongolia
Project Period (FY) 2013-04-01 – 2017-03-31
Keywords楕円曲面 / Mordell Weil群 / 整切断 / 2重切断 / Zariski ペア / contact conic
Outline of Final Research Achievements

We study arithmetic of rational points and Abel-Jacobi map for an elliptic curve appeared as the generic fiber of an elliptic surface S over a projective line. More precisely, we study curves on S given by the sum of two rational points or the duplication of a rational point. We also study bisections on S and curves determined by the bisections.
As applications, we study quasi torus decompositions of plane curves and Zariski N plet. Precisely, we give examples of Zariski pairs for conic-line arrangements, Zariski N-plets for conic arrangements, and weak contact conics for plane quartic curves.

Free Research Field

代数学(代数幾何学)

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi