• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Geometry of solutions of partial differential equations and the inverse problems accompanied by it

Research Project

  • PDF
Project/Area Number 26287020
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionTohoku University

Principal Investigator

SAKAGUCHI SHIGERU  東北大学, 情報科学研究科, 教授 (50215620)

Co-Investigator(Kenkyū-buntansha) 倉田 和浩  首都大学東京, 理工学研究科, 教授 (10186489)
川上 竜樹  龍谷大学, 理工学部, 准教授 (20546147)
宮本 安人  東京大学, 大学院数理科学研究科, 准教授 (90374743)
池畠 優  広島大学, 工学(系)研究科(研究院), 教授 (90202910)
Co-Investigator(Renkei-kenkyūsha) ISHIGE Kazuhiro  東京大学, 大学院数理科学研究科, 教授 (90272020)
MIKAMI Toshio  津田塾大学, 学芸学部, 教授 (70229657)
MISAWA Masashi  熊本大学, 大学院自然科学研究科, 教授 (40242672)
Research Collaborator CAVALLINA Lorenzo  東北大学, 大学院情報科学研究科, D3
Project Period (FY) 2014-04-01 – 2018-03-31
Keywords熱拡散方程式 / 不変等温面 / 複合媒質 / 不変等熱流面 / 反応拡散方程式 / 半線形楕円型方程式 / 囲い込み法 / 逆問題
Outline of Final Research Achievements

We studied mainly the relationship between the behavior of solutions and the geometry of domains in the problems widely described by partial differential equations from the point of view of inverse problems. First, the topology of unbounded stationary isothermic surfaces in Euclidean 3-space was completely determined, and the almost complete characterization of the hyperplanes and the circular cylinders involving a stationary isothermic surface was obtained. Secondly, in the conductivity equation over composite media in Euclidean 3-space, we succeeded in characterizing the concentric balls by means of the neutral conductors without any influence on outside uniform electric fields. Thirdly, in the heat equation over composite media we obtained the characterization of the concentric balls involving either a stationary isothermic surface or a surface with the constant heat flow property among two-phase heat conductors.

Free Research Field

偏微分方程式論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi