• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Condensation effect on high-speed liquid-film flow instability at a liquid-droplet impact on a solid surface in a vaporous environment

Research Project

  • PDF
Project/Area Number 26289031
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Fluid engineering
Research InstitutionHokkaido University

Principal Investigator

WATANABE MASAO  北海道大学, 工学(系)研究科(研究院), 教授 (30274484)

Co-Investigator(Kenkyū-buntansha) 真田 俊之  静岡大学, 工学部, 准教授 (50403978)
小林 一道  北海道大学, 工学(系)研究科(研究院), 准教授 (80453140)
矢口 久雄  群馬工業高等専門学校, その他部局等, 講師 (20568521)
藤井 宏之  北海道大学, 工学(系)研究科(研究院), 助教 (00632580)
Project Period (FY) 2014-04-01 – 2017-03-31
Keywords流体 / 混相流 / 液滴 / 液滴衝突 / スプラッシュ / 薄膜流れ / 可視化
Outline of Final Research Achievements

Droplet impacts on solid surface are key elements in technical applications, such as rapid spray cooling, ink-jet printing and semiconductor cleaning. Although the broad varieties of parameters that control splash formation after the droplet impact, are proposed, they are not thoroughly explored; hence, dynamics of the droplet after the impact are yet fully understood. After droplet impacts on solid surface, characteristic film flow is developed; then splash may be generated. In this study, we examine the effects of the temperature of surrounding gas, which is either condensable or non-condensable, on ethanol droplet impact. We found that splash can be suppressed with the increase of the surrounding gas temperature. We measured the splash threshold pressure for a splash to appear as a function of the temperature. The results show that the splash threshold pressure is a monotonically increasing function of the surrounding gas temperature.

Free Research Field

流体力学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi