• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Research-status Report

p群に対するガロアの逆問題の不分岐解に関する研究

Research Project

Project/Area Number 26400009
Research InstitutionKanazawa University

Principal Investigator

野村 明人  金沢大学, 機械工学系, 教授 (00313700)

Co-Investigator(Kenkyū-buntansha) 藤井 俊  金沢工業大学, 基礎教育部, 講師 (20386618)
脇 克志  山形大学, 理学部, 教授 (30250591)
Project Period (FY) 2014-04-01 – 2017-03-31
Keywordsガロアの逆問題 / 不分岐拡大 / 類数 / p群
Outline of Annual Research Achievements

本研究の目的は,分岐を制限したガロアの逆問題「代数体 k と有限 p 群 G が与えられたとき,不分岐ガロア拡大 L/k でそのガロア群が G と同型なものが存在するか?」という問題を考察し,その応用として「代数体 k の最大不分岐 p 拡大のガロア群G_k(p)の構造解析」を行うことである.
pを奇素数とし,E を位数がpの3乗の非アーベル群で群指数がpのものとする.k が2次体でそのイデアル類群のp-ランクが2以上ならば,kのヒルベルトp類体の類数はpで割り切れ,さらに不分岐ガロア拡大 L/k でそのガロア群がEと同型なものが存在することが,研究代表者(野村)などにより証明されている.k がある種の(2,2)拡大の場合は,吉田氏による研究で k のヒルベルトp類体の類数がpで割り切れるための条件が単項化問題との関連で考察されている.
今年度は,一般の(2,2)拡大上の不分岐ガロア拡大でガロア群がEと同型なものが存在するための条件を調べるための足掛かりとして,次の問題を考察した.k が(2,2)拡大でその3つの2次部分体のイデアル類群のp-部分がすべて非自明な巡回群となる場合は存在するか?(この状況が最も複雑な場合である)連携研究者である木村巌氏の協力により,p=3, 5の場合についてPariによる数値計算を行い,例えば,次のkに対してはすべての2次部分体のイデアル類群の3-部分が非自明な巡回群であることがわかった.
k=Q(\sqrt{-m},\sqrt{-n}) ;(m,n)=(-31,-116), (-152,-23), (-83,-244), (-356,-83), (-356,-87)

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

平成26年度は,有理数体上の(2,2)拡大体のイデアル類群の構造について考察し,p=3,5の場合に重要な数値例を計算することが出来た.この体上のガロアの逆問題の考察はこれからであるが,代表者(野村)の埋め込み問題の手法においては,イデアル類群へのガロア群の作用が重要な鍵を握っている.その作用を解明するために,今後は計算代数ソフトGAPなどの数値計算を併用することになるが,その際も,今回得られた例は重要な役割を果たすと考えている.
計画通りに進んでいない部分もあるが,総合的に判断すると概ね順調と言える.

Strategy for Future Research Activity

今後の研究の方策は,p群の構造解析とそのp群に対するガロアの逆問題の不分岐解の存在について考察し,代数体の最大不分岐p拡大のガロア群の構造を調べることである.具体的には,以下の問題に取り組む.
1.E を位数がpの3乗の非アーベル群で群指数がpのものとする.(2,2)拡大体 k に対して,不分岐ガロ拡大 L/k でそのガロア群が E と同型なものが存在するための必要十分条件を求める.さらに,この条件を(2,2,...,2)型の初等アーベル拡大体の場合に拡張する.
2.1の考察を足掛かりとし,中心拡大でない場合の埋め込み問題の分岐理論を確立する.
3.2の理論を利用して,より一般の代数体 k 上のガロアの逆問題を考察する.

Causes of Carryover

今年度は,金沢で予定していた研究打ち合わせを明治大学で開催された日本数学会の際に行えたことにより研究費が効率的に使用でき,その結果として,少し余りました.

Expenditure Plan for Carryover Budget

前年度の残額は有効活用し,当初予定額と合わせて以下のように使用したいと考えています.
性能の良い計算機や図書のための物品費として約30万円,研究発表と研究打ち合わせのための旅費として約55万円,研究補助等の謝金として約6万円,研究課題に関する小研究集会の会場費用や印刷費用のために約23万円の使用を予定しています.

  • Research Products

    (12 results)

All 2015 2014

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 2 results) Presentation (7 results) (of which Invited: 6 results)

  • [Journal Article] Notes on the existence of unramified non-abelian p-extensions over cyclic fields2014

    • Author(s)
      Nomura Akito
    • Journal Title

      Proc. Japan Acad. Ser.A

      Volume: 90 Pages: 67-70

    • DOI

      10.3792/pjaa.90.67

    • Peer Reviewed / Open Access
  • [Journal Article] Some remarks on the existence of certain unramified p-extensions2014

    • Author(s)
      Nomura Akito
    • Journal Title

      Tokyo J. of Math.

      Volume: 37 Pages: 31-36

    • DOI

      10.3836/tjm/1406552429

    • Peer Reviewed / Open Access
  • [Journal Article] Conformational Analysis of Hexakis-Methylamine Nickel(II) Complex on the Basis of Computational Group Theory and Density Functional Theory2014

    • Author(s)
      Sakiyama Hiroshi, Waki Katsushi
    • Journal Title

      J. Comput Chem. Jpn

      Volume: 13 Pages: 223-228

    • DOI

      10.2477/jccj.2014-0003

    • Peer Reviewed
  • [Journal Article] On restricted ramifications and pseudo-null submodules of Iwasawa modules for Z_p^2-extensions2014

    • Author(s)
      Fujii Satoshi
    • Journal Title

      Journal of the Ramanujan Mathematical Society

      Volume: 29 Pages: 295-305

    • Peer Reviewed
  • [Journal Article] A determinant formula for the relative class number of an imaginary abelian number field2014

    • Author(s)
      Hirabayashi, Mikihito
    • Journal Title

      Commun. Math.

      Volume: 22 Pages: 133-140

    • Peer Reviewed
  • [Presentation] Subgroups of J4 for Amalgamation2015

    • Author(s)
      脇克志
    • Organizer
      日本数学会
    • Place of Presentation
      明治大学
    • Year and Date
      2015-03-23 – 2015-03-23
  • [Presentation] 重さ1のモジュラー形式に伴う2次元アルティン表現の計算2015

    • Author(s)
      木村巌
    • Organizer
      Workshop on Computational Number Theory with Implementations
    • Place of Presentation
      九州大学
    • Year and Date
      2015-02-22 – 2015-02-22
    • Invited
  • [Presentation] Z_p^2拡大上の一部分岐拡大と不分岐岩澤加群の pseudo-null 部分加群について2014

    • Author(s)
      藤井俊
    • Organizer
      愛知数論セミナー
    • Place of Presentation
      愛知工業大学
    • Year and Date
      2014-12-06 – 2014-12-06
    • Invited
  • [Presentation] 重さ1のモジュラー形式とそれに伴うGalois表現の計算2014

    • Author(s)
      木村巌
    • Organizer
      早稲田大学整数論セミナー
    • Place of Presentation
      早稲田大学
    • Year and Date
      2014-11-21 – 2014-11-21
    • Invited
  • [Presentation] 可換拡大の岩澤理論の代数的側面について2014

    • Author(s)
      藤井俊
    • Organizer
      第22回整数論サマースクール
    • Place of Presentation
      香川県小豆島ふるさと村
    • Year and Date
      2014-08-28 – 2014-08-28
    • Invited
  • [Presentation] J4の1333次表現の構成2014

    • Author(s)
      脇克志
    • Organizer
      有限群論草津セミナー
    • Place of Presentation
      草津セミナーハウス
    • Year and Date
      2014-08-02 – 2014-08-02
    • Invited
  • [Presentation] Hasse の方法による虚アーベル体の相対刷数公式についてのいくつかの注意2014

    • Author(s)
      平林幹人
    • Organizer
      北陸数論セミナー
    • Place of Presentation
      金沢大学サテライトプラザ
    • Year and Date
      2014-05-01 – 2014-05-01
    • Invited

URL: 

Published: 2016-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi