• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Explicit reduction theory of algebraic groups

Research Project

  • PDF
Project/Area Number 26400012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

Watanabe Takao  大阪大学, 理学研究科, 教授 (30201198)

Co-Investigator(Renkei-kenkyūsha) HAYATA Takahiro  山形大学, 理工学研究科, 准教授 (50312757)
Research Collaborator Lee Tim Weng  大阪大学, 大学院理学研究科
Project Period (FY) 2014-04-01 – 2017-03-31
Keywords基本領域 / 数論的部分群 / 簡約代数群
Outline of Final Research Achievements

In this research project, we construct fundamental domains of arithmetic quotients of isotropic reductive groups over number fields by using Ryshkov domains. A Ryskov domain is defined by an arithmetical minimum function, which depends on a choice of a maximal parabolic subgroup. If we take different maximal parabolic subgroups, then we have different fundamental domains. In the case of general linear groups, we give explicit descriptions of several fundamental domains. Our construction gives a generalization of Korkine-Zorotareff reduction.

Free Research Field

代数群の整数論

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi